
UNIVERSIDAD DE SONORA

Facultad Interdisciplinaria de
Ciencias Exactas y Naturales

Programa de Licenciatura en Matemáticas

Numerical Solution of Ordinary and Delay

Differential Equations by Neural Network

Methods

T E S I S

Que para obtener el t́ıtulo de:

Licenciado en Matemáticas

Presenta:

Javier Calvo Quirŕın

Director de tesis: M.C. Eddel Eĺı Ojeda Avilés

Hermosillo, Sonora, México, 23 de junio de 2025

SINODALES

Dr. Saúl Dı́az-Infante Velasco
SECIHTI-Universidad de Sonora, Hermosillo, México

Dra. Carolina Espinoza Villalva
Universidad de Sonora, Hermosillo, México

M.C. Eddel Eĺı Ojeda Avilés
Universidad de Sonora, Hermosillo, México

Dr. Daniel Olmos Liceaga
Universidad de Sonora, Hermosillo, México

A mis padres . . .

Agradecimientos

En primer lugar, quiero agradecer profundamente mi familia, quienes siem-
pre me han brindado su apoyo. En especial, quiero agradecer a mis padres,
quiero agradecer su esfuerzo y dedicación a lo largo de toda mi vida. Gracias
por siempre confiar en mi a lo largo de mis estudios, por los valores que me
inculcaron y por estar presentes en todo momento. Este logro es tan mı́o
como suyo.

Agradezco a mi director de tesis el M.C. Eddel Eĺı Ojeda Avilés y al Dr.
Daniel Olmos Liceaga, gracias a ambos por su paciencia y orientación que
me brindaron para la elaboración de este trabajo. Esta tesis no hubiera sido
posible sin su dedicación constante.

También, quiero agradecer a mis sinodales, por el tiempo que dedicaron para
revisar este trabajo. Valoro enormemente sus valiosas recomendaciones y
comentarios que han enriquecido este trabajo.

Table of Contents

1 Introduction 1

2 An Overview of Ordinary Differential Equations 4
2.1 Basic Concepts . 4
2.2 Classification of Ordinary Differential Equations 6
2.3 Solving Ordinary Differential Equations 8

2.3.1 The Solution of an ODE 8
2.3.2 Particular & General Solutions of ODEs 10
2.3.3 Initial Value Problems 13
2.3.4 Some Analytical Methods to solve ODEs 14

2.4 Systems of Differential Equations 17
2.5 Delay Differential Equations 26
2.6 Classical Numerical Methods for Ordinary Differential Equations 27
2.7 Applications of Ordinary Differential Equations 31

3 Introduction to Neural Networks 36
3.1 Overview . 36
3.2 Structure of a Neural Network 37

3.2.1 Neural Networks and the Brain 38
3.2.2 Layers of a Neural Network 38

3.3 Types of Neural Networks . 39
3.3.1 Shallow Neural Networks 39
3.3.2 Deep Neural Networks 41

3.4 Activation Functions . 42
3.5 Training of Neural Networks 45

3.5.1 Optimizing a Neural Network 45

3.5.2 Automatic Differentiation 56
3.6 Physics-Informed Neural Networks 61

4 Solving ODEs and DDEs Using Neural Networks 64
4.1 How does it work . 64
4.2 Implementation . 66

4.2.1 Ordinary Differential Equations 66
4.2.2 Delay Differential Equations 66

4.3 Examples . 69
4.3.1 Ordinary Differential Equations 69
4.3.2 Delay Differential Equations 77

5 Conclusions and Discussion 89

A Proof of theorem 2.1 91

Numerical Solution of Ordinary and Delay Differential Equations 1

Chapter 1

Introduction

The study of Ordinary Differential Equations is of great interest. Many prob-
lems in science and engineering need this tool to answer important questions
in their field. For example, in economics, the Solow-Swan model, which was
developed independently by Robert Solow and Trevor Swan in 1956, aims to
explain the long-term economic growth of a country by considering the accu-
mulation of capital and labor growth. This economic model is characterized
by a single ordinary differential equation. Another application of differential
equations is in the neuroscience field, with the Hodgkin-Huxley equations.
This mathematical model, developed by Alan Hodgkin and Andrew Hux-
ley in 1952, describes how action potentials are initiated and propagated in
neurons [18]. In chemical reaction dynamics, the Brusselator, developed by
Ilya Prigogine and René Lefever in 1968, is a two-component mathematical
model that utilizes differential equations for the study of autocatalytic reac-
tions [14]. The most well-known example of the usage of these equations is the
modeling of the oscillatory behavior coming from the Belousov–Zhabotinsky
reaction.
In general, there are no mathematical techniques that solve such equations
exactly. There are other methods, such as qualitative analysis, asymptotic
analysis, or numerical approximations like Euler’s method presented by Leon-
hard Euler in the 18th century or the Runge-Kutta methods, first presented
by Carl Runge in 1895 and further developed by Wilhelm Kutta in 1901. The
case of numerical approximations basically tells us that there are plenty of nu-
merical schemes depending on the equation type. For example, when working
with stiff differential equations, one may use methods based on backward dif-
ferentiation formulas, which were first introduced in [11]. In [21], there was

Introduction 2

a new proposal about numerical solutions for differential equations. Even
though this approach is old, its real usage came in [25]. From here, people
turned their eyes again to the methods of solving different types of differential
equations using these computational models.
This thesis focuses on understanding the neural network approach for ap-
proximating differential equations. We build the essential foundations of the
theory of ordinary differential equations and neural networks in the first two
chapters of this thesis. This approach ensures that anyone, regardless of
their prior knowledge in either of these fields, can follow and understand the
method presented in this thesis. This work aims to guide the reader step by
step through the concepts from the ground up.
Therefore, this thesis is structured as follows. Chapter 2 is devoted to a small
overview of the theory of ordinary differential equations. Readers familiar
with the fundamental theory of ordinary differential equations may choose
to omit this chapter. We go over elemental topics like the definition of a
differential equation and ways to classify them into various categories. We
will then proceed to examine the idea of a solution of an ordinary differential
equation and introduce some essential definitions involving the solutions of
differential equations. Afterwards, we examine an important theorem that
gives conditions that guarantee the existence and uniqueness of a solution of
a differential equation, along with its proof, which is included in Appendix A
of this thesis. Subsequently, we go over some basic theory of delay differential
equations. In the last section of this chapter, we review two popular classical
methods for approximating the solutions of differential equations.
In Chapter 3, we discuss the fundamental concepts that define the theory of
neural networks. First, we examine the structure of neural networks and re-
view the different elements that make up these computational models. Next,
we will introduce the concept of activation function, focusing on their role
in allowing neural networks to fit nonlinear data. We will also look at some
commonly used examples of these functions. Then, we will study the pro-
cess in which neural networks learn, starting with defining the concept of
loss function, used to quantify the performance of a model. Afterwards, the
algorithm of backpropagation and the way it is used to optimize a neural
network is reviewed. After that, we inspect the gradient descent algorithm
and examine its role in the optimization of neural networks. We also provide
some examples of gradient descent-based algorithms, along with their corre-
sponding pseudocode, used to minimize the loss function. To conclude this
section, we will examine Physics-Informed Neural Networks and an impor-

Numerical Solution of Ordinary and Delay Differential Equations 3

tant Universal Approximation Theorem for neural networks.
In Chapter 4, the construction and implementation of the Physics-Informed
Neural Network method for approximating ordinary differential equations
and delay differential equations is presented. We define the respective loss
function we seek to minimize to approximate each type of differential equa-
tion. After that, we start presenting our examples. Firstly, we show various
types of ODEs, which include examples whose solution is known and exam-
ples where the solution cannot be found through analytical methods. Lastly,
we present multiple examples of DDEs.
Finally, in Chapter 5, we will share the conclusions drawn from our work.

An Overview of Ordinary Differential Equations 4

Chapter 2

An Overview of Ordinary
Differential Equations

Differential equations are a mathematical tool that relates functions and their
derivatives. The implementation of differential equations is essential in areas
of applied mathematics because these equations can model the behavior of
dynamic systems, and they can also be utilized to describe how quantities
change over time. This is why differential equations are used across many
fields, ranging from areas of science like physics and biology, and playing a
crucial role in engineering. Differential equations allow us to mathematically
model many kinds of phenomena, such as population growth, heat distribu-
tion, fluid dynamics, the spread of diseases, and so forth. In this chapter, we
explore the theoretical foundations of differential equations, with a focus on
Ordinary Differential Equations.

2.1 Basic Concepts

Definition of a Differential Equation

A differential equation is a type of equation whose unknown is not a number,
but some other function that satisfies that equation. Let us begin by defining
what a differential equation is.

Definition 2.1 (Differential Equation). A differential equation (DE) is any
equation that contains the derivatives of one or more dependent variables,
with respect to one or more independent variables.

Numerical Solution of Ordinary and Delay Differential Equations 5

Even though they are both called equations, differential equations look noth-
ing like algebraic equations. Let us look at a few examples to illustrate how
differential equations look like:

dy

dx
+ 2y = x,

dy

dx
= y · sin(x),

dy2

dx2
− 3

dy

dx
+ 2y, = 0,

∂u

∂t
+ u

∂u

∂x
= 0,

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0.

(2.1)

Although at first glance these equations can look quite daunting, they are
one of the most useful resources in mathematics and are used in almost every
academic discipline.

Notation for Differential Equations

We can write differential equations in different ways, among which are the
following [32]:

• Leibniz’s Notation

d2y

dx2
− 3

dy

dx
+ 2y = sin(x).

• Lagrange’s Notation

f ′′(x)− 3f ′(x) + 2y = sin(x).

• D-Notation
D2

xy − 3Dxy + 2y = sin(x).

• Newton’s Notation

ÿ − 3ẏ + 2y − sin(x).

Please note that each of these past four equations is equal to one another,
and it is up to personal and stylistic preference which notation is used when
writing.

An Overview of Ordinary Differential Equations 6

2.2 Classification of Ordinary Differential

Equations

In this section, we look into the classification of differential equations based
on their order, type, and linearity. Understanding what kind of differential
equation we are dealing with is crucial in order to be able to solve them, be-
cause different kinds of differential equations are solved with different meth-
ods.

Order of Differential Equations

Definition 2.2 (Order of a Differential Equation). The order of a differential
equation is equal to the highest derivative that appears in that equation.

In the example list (2.1), using the definition above, we can classify the first,
second, and fourth examples as differential equations of order 1. While the
third and fifth examples are both differential equations of order 2.

Types of Differential Equations

We now classify differential equations by their type. There are two types of
differential equations, which are Ordinary Differential Equations and Partial
Differential Equations.

Definition 2.3 (Type of a Differential Equation). A differential equation
is called an Ordinary Differential Equation ODE if said equation only has
ordinary derivatives in it. Likewise, a differential equation is called a Partial
Derivative Equation PDE if the equation has partial derivatives in it.

In the example list (2.1), we can see that examples 1-3 are Ordinary Differ-
ential Equations, and examples 4 and 5 are Partial Differential Equations.
In this thesis, we will only be working with Ordinary Differential Equations.
Therefore, from this point onward, the word ordinary might be omitted from
time to time when talking about differential equations.

Linearity of Differential Equations

The final classification category is linearity. In this case, we are working
exclusively with ordinary differential equations.

Numerical Solution of Ordinary and Delay Differential Equations 7

Definition 2.4. (Linearity of a Differential Equation) A differential equation
is said to be linear if it has the following form

a0(x)y + a1(x)
dy

dx
+ a2(x)

d2y

dx2
+ · · ·+ an(x)

dny

dxn
= g(x),

where a0(x), a1(x), a2(x), · · · , an(x), g(x) are functions of x, and y is the un-
known function of the independent variable x.

From this definition, we can also derive two key properties of linear differen-
tial equations, which are as follows:

• The coefficients a0, a1, · · · , an only depend on the independent variable,
in this case x.

• The degree of the dependent variable y and all of its derivatives are of
first degree.

Let’s look at the following examples and decide whether they are linear or
not.

1.
d2y

dx2
+ 5

dy

dx
+ 6y = 0.

2.
d2y

dx2
+ y2 = 0.

3. (1− y)
dy

dx
+ 2y = ex.

4. x2 d
2y

dx2
+ x

dy

dx
− 2y = sin(x).

In example 1, we observe that it is linear, because y and all its derivatives are
raised to the power 1, and also the coefficients are all integers. In example
2, we can quickly identify that it is nonlinear because of the y2 term. In 3,
we verify that it is nonlinear, this time because of the (1− y) coefficient that
is next to the first derivative of y, since coefficients only have to depend on
the independent variable.
Finally, example 4 is also a linear differential equation. Someone may look at
the x2 coefficient and the sine of x, and argue that it cannot be linear since
clearly those are not linear. However, as we stated previously, the coefficients
accompanying the derivatives only need to depend on the independent vari-
able, which x2 follows, as well as sin(x). And since y and all of its derivatives
are raised to the first power, we conclude that this differential equation is
linear.

An Overview of Ordinary Differential Equations 8

2.3 Solving Ordinary Differential Equations

In this section, we look at what it means to solve a differential equation. First,
we examine the definition of a solution to a differential equation and what it
means to be a solution. Secondly, we explore what initial value problems and
boundary value problems are. Finally, we review some methods for solving
differential equations.

2.3.1 The Solution of an ODE

To understand what a solution of a differential equation is, we first focus on
an example of a second-order algebraic equation.
Let us consider the following equation

2x2 − 4x− 6 = 0. (2.2)

Using the quadratic formula, we obtain that the solutions of (2.2) are x1 = −1
and x2 = 3. When we say x1 and x2 are the solutions to the equation, we
mean that x1 and x2 both satisfy the equation. In other words, if we plug
either x1 or x2 into (2.2), the equality holds.
With that in mind, let us define what a solution of a differential equation is.

Definition 2.5 (Solution of an ODE). A function y = f(x) is said to be a
solution of an n-th order differential equation on an interval I, if y has at
least n continuous derivatives on I, which when substituted into the nth-
order differential equation reduces the equation to an identity.

In mathematical symbols, this definition can be written as: the function
y = f(x) is a solution of a differential equation

F (x, y, y′, . . . , y(n)) = 0,

if
F [x, f(x), f ′(x), · · · , f (n)] = 0 ∀x ∈ I.

As can be seen, the concept of a solution to a differential equation is similar to
the concept of a solution to an algebraic equation, but instead of finding some
real (or complex) number, we look for a function that satisfies the differential
equation. Of course, these concepts are not identical, as differential equations
have their particular aspects that we will be discussing later in this section.

Numerical Solution of Ordinary and Delay Differential Equations 9

Example 2.1. Consider the following differential equation:

x
d2y

dx2
+

dy

dx
= 0. (2.3)

We will show that

a) y1(x) = ln

(
1

x

)
is a solution 2.3.

b) y2(x) = x2 is not a solution of 2.3.

Firstly, we prove that y1 is a solution of (2.3). To do that, we calculate
the first and second derivatives of y1, since it is a second-order differential
equation:

y′1 = −1

x
, y′′1 =

1

x2
.

Now, let’s substitute the derivatives back into the differential equation:

x · y′′1 + y′1 = 0,

x · 1

x2
+

(
−1

x

)
= 0.

Simplifying this expression, we obtain:

1

x
− 1

x
= 0,

0 = 0.

Since the equality holds even after we substituted the values of the derivatives
into the differential equation, we say that y1 is a solution of (2.3).
Now let’s see that y2 is not a solution of (2.3). Like before, let’s find the first
and second derivatives of y2:

y′2 = 2x , y′′2 = 2.

Substituting these derivatives into the differential equation, we get:

x · y′′2 + y′2,

x · 2 + 2x,

2x + 2x,

4x ̸= 0.

In this case, the equality does not hold after we substituted the values into
(2.3), and with that, we have proven that y2 is not a solution to (2.3), just
as we desired.

An Overview of Ordinary Differential Equations 10

2.3.2 Particular & General Solutions of ODEs

When we study the theory of integration in calculus with the help of the
Fundamental Theorem of Calculus, we can solve problems like finding the
antiderivative y of a function f(x), which means finding a function y that
satisfies y′(x) = f(x). Looking at that expression and using what we have
learned up to this point, we can claim that we have actually solved a simple
differential equation without even realizing it.
With that in mind, let’s recall some of the things that we learned in calculus
about integration to understand the concept of an n-parameter family of
solutions of differential equations.
Let’s look at the following example

y′ = ex. (2.4)

In (2.4), we use the Fundamental Theorem of Calculus (FTC) and integrate
both sides of the equation to obtain the following function

y = ex + c.

We consider this function, y = f(x, c), the solution of the simple differential
equation (2.4), with c being the constant of integration that can take any
numerical value.
Now let’s take a look at this next example

y′′ = ex. (2.5)

This time we have the second derivative of y, integrating twice using once
again the FTC and simple integration techniques, we can conclude that the
solution of (2.5) is

y = ex + c1x + c2.

Notice that this time the solution y = f(x, c1, c2) has two constants c1 and
c2, which again can take any numerical value.
Finally, let’s take a look at the following equation

y′′′ = ex. (2.6)

This time we have the third derivative of y, so we are solving this equation
the same way we solved (2.5), but now we are integrating three times to
obtain

y = ex + c1x
2 + c2x + c3.

Numerical Solution of Ordinary and Delay Differential Equations 11

This time the solution of the differential equation y = f(x, c1, c2, c3) has
three constants c1, c2, c3 which like in the previous examples can take any
numerical value.
With these past three examples in mind, we can come up with two conjectures
involving the solutions of differential equations:

1. A differential equation has infinite solutions, as many as the number of
values the constants c1, c2, . . . , cn can take.

2. The number of constants in the solution depends on the order of the
differential equation.

From this point onwards, we refer to the constants c1, c2, . . . , cn as the dif-
ferential equation solution’s n-th parameters.

Definition 2.6 (n-parameter family of solutions of an ODE). When solving
the n-th order differential equation

F (x, y′, y′′, · · · , y(n)) = 0,

we seek a function involving n + 1 variables x, c1, c2, · · · , cn with the form

y = f(x, c1, c2, · · · , cn),

and we call the function y the n-parameter family of solutions of the n-th
order differential equation.

With this definition in mind, we can confirm both of our previously stated
conjectures we made involving the solution of a differential equation. A sin-
gle differential equation can possess an infinite number of solutions, which
correspond to the unlimited number of choices the parameters of the solution
can take. And when solving an n-th order differential equation, we obtain
an n-th order family of solutions to that equation, that is, the solution will
have as many parameters as the order of the differential equation.
Looking back at examples (2.4), (2.5), and (2.6), and their respective so-
lutions, we can now conclude that these equations have a 1-parameter, 2-
parameter, and 3-parameter family of solutions, respectively.
When we assign numerical values to the parameters of an n-parameter family
of solutions, we obtain a particular solution of a differential equation.

An Overview of Ordinary Differential Equations 12

Figure 2.1: Particular solutions of example (2.4) for different values of c.

Definition 2.7 (Particular solution of an ODE). A solution of a differential
equation is called a particular solution if it does not contain any arbitrary
parameters and satisfies the differential equation.

Now we define what the general solution of a differential equation is.

Definition 2.8 (General solution of an ODE). An n-th parameter family of
solutions that solves the n-th order differential equation is called the general
solution of the differential equation if it contains every particular solution of
the equation.

Let’s take a look back at example (2.4) and its solution. We assign some
numerical values to the parameter in the solution, and we obtain some par-
ticular solutions to that equation. In Figure 2.1, we substituted some values
for the parameter of the solution of (2.4) and graphed those functions. Please
note that each function plotted in Fig. 2.1 is a solution of (2.4), so that im-
plies that all of them satisfy the differential equation.

Numerical Solution of Ordinary and Delay Differential Equations 13

Up until this point, we have learned that when solving a differential equation,
we obtain what is called a general solution, and this general solution becomes
a particular solution when we assign some numerical values to the parameters
in the solution. Nonetheless, there exist some equations where the general
solution does not describe all the solutions to a differential equation. These
types of solutions that are not derived from the general solution are called
singular solutions of a differential equation.

Definition 2.9 (Singular solution of an ODE). A singular solution of a
differential equation is a solution that cannot be obtained from the general
solution of the equation.

2.3.3 Initial Value Problems

When solving differential equations in some applications, we are only inter-
ested in a specific solution that satisfies some additional conditions. The
requirements we desire our particular solution to follow are called initial con-
ditions. For example, let’s say we want our solution to go through the point
(3,−1), then we write our initial condition as

y(3) = −1.

Definition 2.10 (Initial Conditions). Initial conditions are a set of points
that the solution of an n-th order differential equation and its first n − 1
derivatives have to satisfy.

These initial conditions help us determine the values of the parameters from
the general solution of a differential equation to obtain a particular solution
that satisfies the equation, and also satisfies the given initial conditions.
When we pair an appropriate number of initial conditions with a differential
equation, we obtain what is called an Initial Value Problem.

Definition 2.11 (Initial Value Problem). An Initial Value Problem(IVP) is
a differential equation along with some initial conditions.

Usually, an IVP has as many initial conditions as the order of the differential
equation we want to solve. Based on this last statement, a typical IVP has
the following form

Solve: F (x, y, y′, . . . , y(n)) = 0

Subject to: y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1.
(2.7)

An Overview of Ordinary Differential Equations 14

When solving an IVP, two important questions involving the solution arise.
Firstly, does this IVP have a solution? We would like to know if this initial-
value problem actually has a solution before we work on it.
Secondly, if this solution exists, is it unique? This is an important question to
consider because if this IVP models a physical system, we would like to know
that this is a unique solution before we apply this solution to the system.
Otherwise, if this IVP had multiple solutions, how would we know which one
to use?
Fortunately, we have a theorem that gives conditions under which an initial
value problem has a unique solution.

Theorem 2.1 (Existence and Uniqueness of Solutions [23])
Let E be an open subset of Rn containing x0 and assume f ∈ C1(E). Then
there exists an a > 0 such that the initial value problem

ẋ = f(x)

x(0) = x0

has a unique solution x(t) on the interval [−a, a].

Proof. The proof of this theorem can be found in Appendix A.

2.3.4 Some Analytical Methods to solve ODEs

We look at a few ways we can solve differential equations. We only focus
on 2 methods to find the solutions of differential equations, but there are
a lot more methods that can be studied. Sometimes, differential equations
cannot be solved through analytical methods; therefore, we need the help of
numerical methods to approximate the solutions.

Separable Equations

Let’s start with the easiest method, that is, solution by separable equations.
We first define what it means for a differential equation to be separable [34].

Definition 2.12 (Separable Equation). A first-order differential equation in
the form

dy

dx
= g(x)h(y)

is said to be a separable equation.

Numerical Solution of Ordinary and Delay Differential Equations 15

Let’s see how to solve a separable equation. First, let’s consider an equation
like in the definition.

dy

dx
= g(x)h(y).

Assuming h(y) = 0 ∀y and dividing each side by h(y) we get

1

h(y)

dy

dx
= g(x).

For convenience lets denote 1
h(y)

as p(y)

p(y)
dy

dx
= g(x).

Let’s suppose y = ϕ(x) is a solution of the equation; therefore, it must be
true that p(ϕ(x))ϕ′(x) = g(x). Consequently, integrating both sides with
respect to x to obtain ∫

p(ϕ(x))ϕ′(x)dx =

∫
g(x)dx.

Notice that dy = ϕ′(x)dx, so this simply becomes∫
p(y)dy =

∫
g(x)dx.

Let’s take a look at an example.

Example 2.2. Solve
dx

dt
= x2 cos(t).

Separating the x and t variables we get∫
1

x2
dx =

∫
cos(t)dt.

By integrating both sides, we obtain

−1

x
= sin(t) + c.

Solving for x, we get the solutions

x = − 1

sin(t) + c
.

An Overview of Ordinary Differential Equations 16

Linear Equations

The next method we examine is for linear differential equations. For this
method to work, we need to have a first-order differential equation in the
following form

dy

dx
+ p(x)y = g(x), (2.8)

where both p(x) and g(x) are continuous functions.
Now that we have our linear equation in this form, we identify p(x) and find
the integrating factor µ(x) = e

∫
p(x)dx.

Then we multiply both sides of 2.8 by the integrating factor [32]

e
∫
p(x)dx dy

dx
+ e

∫
p(x)dxp(x)y = e

∫
p(x)dxg(x).

Notice how the left side of this equation is the derivative of the product
between e

∫
p(x)dx and y, therefore

d

dx

[
e
∫
p(x)dxy

]
= e

∫
p(x)dxg(x).

Finally, we simply integrate both sides and solve for y.
Let’s look at an example.

Example 2.3. Solve
dy

dx
− 3y = 0.

As we can see, this equation is already in the form 2.8, so p(x) = −3. To find
the integrating factor you simply solve e

∫
−3dx, which clearly is e−3x. Now we

multiply both sides of the differential equation by e−3x

e−3x dy

dx
− 3e−3xy = e−3x · 0 = e−3x.

Notice how the left side of this last equation can be written as

d

dx

[
e−3xy

]
= 0.

Integrating both sides of this equation∫
d

dx

[
e−3xy

]
dx =

∫
0dx.

Numerical Solution of Ordinary and Delay Differential Equations 17

We obtain that
e−3xy = c,

and solving for y yields
y = ce3x.

2.4 Systems of Differential Equations

Up until this point, we have only worked with single differential equations. In
this section, we learn about systems of differential equations that involve two
or more differential equations. The main reason for studying these systems is
that many of the “real world” situations we are interested in can be modeled
using systems of differential equations. One of these problems is modeling
the population of two species, predators and prey. With the help of a system
of differential equations, we can make a prediction about the population of
these two species that changes with time, given certain biological parameters.
Let’s define what a system of first-order differential equations is [34].

Definition 2.13 (System of n first order differential equations). The system
of n equations

dy1
dt

= g1(y1, y2, · · · , yn, t),

dy2
dt

= g2(y1, y2, · · · , yn, t),
...

dyn
dt

= gn(y1, y2, · · · , yn, t),

(2.9)

where g1, · · · , gn are functions of y1, y2, · · · , yn, t, defined on a common set S
is called a system of n first order differential equations.

The solution of a system of differential equations is not a single function, but
rather a set of functions.

Definition 2.14 (Solution of a system of differential equations). A solu-
tion of the system of n first order differential equations is a set of functions
y1(t), y2(t), y3(t), · · · , yn(t), each defined on a common interval I ⊆ S, satis-
fying all the equations in the system.

An Overview of Ordinary Differential Equations 18

If the functions g1, g2, · · · , gn in definition 2.13 are all linear, we refer to it
simply as a linear system. In this particular case, the system will have the
following form:

dy1
dt

= a11(t)y1 + a12(t)y2 + · · ·+ a1n(t)yn + f1(t),

dy2
dt

= a21(t)y1 + a22(t)y2 + · · ·+ a2n(t)yn + f2(t),

...

dyn
dt

= an1(t)y1 + an2(t)y2 + · · ·+ ann(t)yn + fn(t).

(2.10)

For simplicity, lets assume that the coefficients aij and the functions fi with
i = j = 1, 2, · · · , n are all continuous on a common interval I.
Another way of expressing the linear system 2.10 is by using matrices. The
first matrix has the derivatives of the n differential equations in the system.

Y =


y1(t)
y2(t)
y3(t)

...
yn(t)

 .

The next matrix will have the coefficients aij, where i, j ∈ 1, 2, 3, · · · , n

A(t) =


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)
a31(t) a32(t) · · · a3n(t)

...
. . .

an1(t) an2(t) · · · ann(t)

 .

The last matrix will have the functions fi, where i ∈ 1, 2, 3, · · · , n

F(t) =


f1(t)
f2(t)
f3(t)

...
fn(t)

 .

Numerical Solution of Ordinary and Delay Differential Equations 19

With the help of these 3 matrices, the linear first-order differential equations
system 2.10 can be written as

ẏ1(t)
ẏ2(t)
ẏ3(t)

...
ẏn(t)

 =


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)
a31(t) a32(t) · · · a3n(t)

...
. . .

an1(t) an2(t) · · · ann(t)




y1(t)
y2(t)
y3(t)

...
yn(t)

+


f1(t)
f2(t)
f3(t)

...
fn(t)

 ,

or just simply
Ẏ = AY + F.

We say a system is homogeneous if F ≡ 0, this is

Ẏ = AY. (2.11)

In this thesis, we only focus on systems of two linear homogeneous differential
equations with constant coefficients, like the following

ẏ1 = ay1 + by2,

ẏ2 = cy1 + dy2.
(2.12)

We call a system like 2.12 a coupled system because we need the information
of y2 in order to find y1, and vice versa, we need the information of y1 in
order to find y2.
To solve 2.12, let’s first look at an example.

Example 2.4. Verify that

Y1 =

(
1
−1

)
e−2t and Y2 =

(
3
5

)
e6t

are solutions of the system

Ẏ =

(
1 3
5 3

)
Y. (2.13)

First lets get the derivatives of both Y1 and Y2

Ẏ1 =

(
−2e−2t

2e−2t

)
and Ẏ2 =

(
18e6t

30e6t

)
.

An Overview of Ordinary Differential Equations 20

Now lets find AY1 and AY2

AY1 =

(
1 3
5 3

)(
e−2t

−e−2t

)
=

(
e−2t − 3e−2t

5e−2t − 3e−2t

)
=

(
−2e−2t

2e−2t

)
= Ẏ1,

and

AY2 =

(
1 3
5 3

)(
3e6t

5e6t

)
=

(
3e6t + 15e6t

15e6t + 15e6t

)
=

(
18e6t

30e6t

)
= Ẏ2.

Therefore Y1 and Y2 are solutions of the system.

It is also the case that if we multiply by any constant c a solution of a system,
it will remain a solution of the system. Also, if we add two solutions of a
system, the resulting vector will also be a solution. Let’s state the following
theorem [6].

Theorem 2.2
Let Y1 and Y2 be two solutions of the system Ẏ = AY. Then:

(a) cY1 is a solution, for any c ∈ R.

(b) Y1 + Y2 is a solution.

Proof.

(a) If Y1 is a solution of Ẏ = AY, then

d

dt
cY1 = c

dY1

dt
= cAY1 = A(cY1).

Therefore, cY1 is also a solution of Ẏ = AY.

(b) If Y1 and Y2 are solutions of Ẏ = AY then

d

dt
(Y1 + Y2) =

dY1

dt
+

dY2

dt
= AY1 + AY2 = A(Y1 + Y2).

Hence, Y1 + Y2 is also a solution of the system.

An immediate corollary of this theorem is that any linear combination of
solutions of 2.11 is also a solution of the system.

Numerical Solution of Ordinary and Delay Differential Equations 21

Corollary 2.2.1
If Y1,Y2, . . . ,Yn are solutions of the homogeneous system Ẏ = AY, then
c1Y1 + c2Y2 + · · ·+ cnYn is again a solution of the system for any choice of
constants c1, c2, . . . , cn.

Proof.
Immediately follows from Theorem 2.2.

With this corollary, we can define what the general solution of a homogeneous
system is.

Definition 2.15 (General Solution of Homogeneous Systems). Let
Y1,Y2, . . . ,Yn be a set of linearly independent solutions of the system 2.11.
We define the general solution Y of the system as

Y = c1Y1 + c2Y2 + · · ·+ cnYn,

where c1, c2, . . . , cn are arbitrary constants.

Looking back at example 2.13, we know that both Y1 =

(
1
−1

)
e−2t and

Y2 =

(
3
5

)
e6t are solutions of the system. Then, the general solution of 2.13

is

Y = c1Y1 + c2Y2 = c1

(
1
−1

)
e−2t + c2

(
3
5

)
e6t.

This general solution has the form

Yi =

(
k1
k2

)
eλit i = 1, 2

where k1, k2, λ1 and λ2 are constants.
One problem that comes to mind is whether we can always find a solution
to 2.11 with the form

Y = Keλt,

where K is a vector of n constants.
Lets suppose Y = Keλt is a solution to 2.11, then

λKeλt = AKeλt.

An Overview of Ordinary Differential Equations 22

We divide each side by eλt and we get

AK = λK.

Which anyone with a basic knowledge of linear algebra identifies as the eigen-
value problem. This is in order to find the solutions of 2.11, we must find
the eigenvalues and eigenvectors of the matrix A. The way we can find the
eigenvalues of a matrix is by using the characteristic equation of A

det(A− λI) = 0.

For the two-equation system 2.12, the characteristic equation of the matrix
of coefficients is

det(A−λI) =

∣∣∣∣a− λ b
c d− λ

∣∣∣∣ = (a−λ)(d−λ)−bc = λ2−(a+d)λ+ad−bc.

When calculating the eigenvalues of the matrix A, we are basically solving an
n-th degree algebraic equation. So when finding the eigenvalues of a matrix,
we have three options involving these values:

1. Real Eigenvalues,

2. Complex Eigenvalues,

3. Repeated Eigenvalues.

Let’s look at an example of an initial-value problem where the matrix of
coefficients A has real, distinct eigenvalues.

Example 2.5. Solve

ẋ1 = x1 + 2x2,

ẋ2 = 3x1 + 2x2,

with
x1(0) = 0, x2(0) = −4.

First, let’s transform the equations into matrix form

Ẋ =

(
1 2
3 2

)(
x1

x2

)
with X(0) =

(
0
−4

)
.

Numerical Solution of Ordinary and Delay Differential Equations 23

The next step we do is to calculate the eigenvalues of the matrix with the
help of the characteristic equation

λ2 − (1 + 2)λ + (1)(2)− (2)(3) = 0,

λ2 − 3λ− 4 = 0,

(λ + 1)(λ− 4) = 0.

Therefore the eigenvalues are λ1 = −1 and λ2 = 4. Next, we find the eigen-
vector corresponding to each eigenvalue. Lets start with λ1 :

(A− λ1I)α = 0,

(A + I)α = 0,(
2 2
3 3

)(
α1

α2

)
=

(
0
0

)
.

Solving for α1 and α2 we get

α1 = −α2.

If we take α2 = 1 the eigenvector associated to λ1 is(
−1
1

)
.

Now, let’s find the eigenvector associated to λ2:

(A− λ2I)α = 0,

(A− 4I)α = 0,(
−3 2
3 −2

)(
α1

α2

)
=

(
0
0

)
.

Solving for α1 and α2

α1 =
2

3
α2.

If we take α2 = 3 the eigenvector associated to λ2 is(
2
3

)
.

An Overview of Ordinary Differential Equations 24

Then the general solution of the system is

X = c1e
−t

(
−1
1

)
+ c2e

4t

(
2
3

)
.

Now we use the given initial condition to find c1 and c2(
0
−4

)
= X(0) = c1

(
−1
1

)
+ c2

(
2
3

)
.

In equation form, this is

−c1 + 2c2 = 0,

c1 + 3c2 = −4.

Solving for both c1 and c2

c1 = −8

5
, c2 = −4

5
.

Therefore, the solution of the initial-value problem is

X = −8

5
e−t

(
−1
1

)
− 4

5
e4t
(

2
3

)
.

Rewriting Equations as Systems

We can rewrite an n-th order differential equation into an equivalent system of
differential equations of first order. One of the main reasons to do this is that
it is often easier to work with a bunch of first-order differential equations than
a single differential equation of order n. We say the n-th order differential
equation and the system of equations are equivalent because they both share
the same set of solutions. Please note that the reverse is not always possible;
we cannot always write a system of n-th differential first order differential
equations into a single n-th order differential equation.
The main idea is to define n functions and “chain” the derivatives and make
a change of variables. Let’s take a look and see how it’s done [6].
Suppose we are given the n-th order linear differential equation

an(t)
dny

dtn
+ an−1(t)

dn−1y

dtn−1
+ · · ·+ a0(t)y = 0. (2.14)

Numerical Solution of Ordinary and Delay Differential Equations 25

We define the following functions

x1 = y,

x2 =
dy

dt
,

x3 =
d2y

dt2
,

...

xn =
dn−1y

dtn−1
.

Now we take the derivative with respect to t on all the last n equations on
both sides of them. Then

dx1

dt
=

dy

dt
,

dx2

dt
=

d2y

dt2
,

dx3

dt
=

d3y

dt3
,

...

dxn

dt
=

dny

dtn
.

Notice how the derivative of x1 is really x2, and the derivative of x2 is x3,
and so forth. Also observe how the derivative of xn is the n-th derivative of
y, this is the highest order derivative in 2.14. Therefore, if we isolate the dny

dyn

term in 2.14, we can determine the value of the derivative of xn. With this
in mind

dx1

dt
= x2,

dx2

dt
= x3,

dx3

dt
= x4,

...

dxn

dt
= −an−1xn + an−2xn−1 + · · ·+ a1x2 + a0x1

an
.

An Overview of Ordinary Differential Equations 26

And with this, we have transformed the n-th order differential equation 2.14
into a system of first-order differential equations just as we desired.
Let’s take a look at an example to make this clear.

Example 2.6. Rewrite the following 2nd order differential equation into a
system of first-order differential equations

2y′′ − 5y′ + y = 0. (2.15)

First, let’s define the following functions

x1(t) = y(t),

x2(t) = y′(t).

Differentiating both equations, we get

x′
1 = y′ = x2,

x′
2 = y′′.

Notice how y′′ is really the original equation 2.15. Then the 2nd order differ-
ential equation has been rewritten as a differential equation system

x′
1 = x2,

x′
2 =

5

2
x2 −

1

2
x1.

2.5 Delay Differential Equations

Delay differential equations (DDEs) are a type of differential equation in
which the derivative of the unknown function at the current time depends
on the value of the function at previous times. In contrast with ODEs,
which only take into consideration the present state of the system when
calculating the current value, DDEs incorporate the history of the system
into the calculation of the value at any given time. The reasoning for the
study of DDEs is that many processes in biology, chemistry, engineering, etc.,
involve some sort of natural delay. For instance, animals must first digest
their food; only then do their bodies show a response. Therefore, focusing
only on ODEs and ignoring these intrinsic delays within a system can lead
to inaccurate predictions and a misunderstanding of the system’s behavior.

Numerical Solution of Ordinary and Delay Differential Equations 27

The general form of an initial value problem of a delay differential equation
is expressed by:

y′(t) = f(t, y(t− τ1), . . . , y(t− τn)),

y(t) = ϕ(t), t ≤ t0,
(2.16)

where τ1, . . . , τn are the delays (or lags) of the system. It is important to note
that these delays are always non-negative, and can be classified into three
categories [5]:

• constant delay : τi is a constant value,τi = k,

• time dependent delay : τi is a function of t, τi = τi(t),

• state dependent delay : τi is a function of t and y, τi = τi(t, y(t)).

Unlike ordinary differential equation initial value problems which only need
an initial condition for t0, when solving delay differential equation initial
value problems an initial condition function, that depends on t, that spans
the entire interval [−τ, t0] is needed. We denote this initial condition function
as ϕ(t) in IVP 2.16.
In this thesis, we only work with DDEs with a single constant delay; this is

y′(t) = f(t, y(t), y(t− τ)),

y(t) = ϕ(t), t ∈ [−τ, t0].
(2.17)

2.6 Classical Numerical Methods for Ordi-

nary Differential Equations

It is not always the case that we can find an exact solution to a differential
equation. In fact, most differential equations cannot be solved analytically.
For these kinds of equations, it is a common practice to approximate the
solutions with some computational help. When used in industry, differential
equations are usually solved numerically as modeling of real-world phenom-
ena leads to equations that are too complicated to solve analytically. In this
section, we look into some ways we can obtain the solution of a differential
equation with the help of computer algorithms.
The methods we look at in this section are called finite difference methods.

An Overview of Ordinary Differential Equations 28

For these kinds of methods, we discretize the solution interval we are inter-
ested in. The reason for this is that a computer clearly cannot approximate
a function on an entire continuous interval [a, b] since that would require ap-
proximating the solution at an infinite number of points.
What we do instead is determine numerical approximations at discrete times
t0 < t1 < t2 < · · · < tn in the interval we’re interested in. To do this we
divide the interval [a, b] into n small segments of constant length

h =
b− a

n
= ti+1 − ti ∀i = 0, 1, 2, . . . , n.

We call h the step-size we will use to approximate the solution to our differ-
ential equation. With the help of the step-size, we can build a set of equally
spaced discrete times of [a, b], this is a = t0 < t1 < t2 < · · · < tn = b.

Euler’s Method

Euler’s method is the simplest and easiest approximation method for solving
initial value problems. The objective is to approximate the solution of the
first-order initial value problem [7]

y′ = f(t, y) , y(t0) = y0. (2.18)

Let’s suppose that y(t) ∈ C2[a, b] is the unique solution of 2.18. With the
help of Taylor’s Theorem, for each i = 0, 1, 2, . . . , n we have

y(ti+1) = y(ti) + (ti+1 − ti)y
′(ti) +

(ti+1 − ti)
2

2
y′′(ζi),

for some number ζi ∈ (ti, ti+1). Since h = ti+1 − ti, then

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ζi).

Due to y(t) being the solution of 2.18 it satisfies the differential equation,
therefore

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ζi).

Euler’s method constructs yi ≈ y(ti) ∀i = 1, 2, · · · , n, by deleting the re-
mainder term. Finally, Euler’s method is given by

yi+1 = yi + hf(ti, yi) ∀i = 0, 1, 2, . . . , n− 1. (2.19)

Numerical Solution of Ordinary and Delay Differential Equations 29

Runge-Kutta Methods

The next family of methods we look at is the Runge-Kutta methods. These
kinds of methods are designed to imitate the Taylor series method without
requiring analytic differentiation of the original differential equation.
The Runge-Kutta methods are a generalization of the Euler method, but
this time, instead of only calculating the slope at a single point, we use a
weighted average of slopes in the interval ti ≤ t ≤ ti+1. This is

yi+1 = yi + h

m∑
n=1

wnkn.

Here wi are constants used to weigh the slope, and each ki is the function
f(t, y) evaluated at a point. The number m is called the order of the Runge-
Kutta method.
The most widely used method of the Runge-Kutta family is the Runge-Kutta
method of order 4, or simply the RK4 method. But there exist other methods
like the Runge-Kutta methods of order 2 and order 3. The formulas for the
“classical” RK4 method are the following:

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4) ∀i = 0, 1, 2, . . . , n,

where

k1 = f(ti, yi),

k2 = f

(
ti +

h

2
, yi + h

k1
2

)
,

k3 = f

(
ti +

h

2
, yi + h

k2
2

)
,

k4 = f(ti + h, yi + hk3).

We skipped the derivation of the order 4 Runge-Kutta method as it is quite
tedious and out of the scope of this thesis, but it can be found in Ralston
and Rabinowitz [26]. In the formulas above, yi+1 is the approximation of the
solution y at ti+1, this is y(ti+1), which is determined by the present value yi
plus the weighted average of k1, k2, k3 and k4, where

• k1 is the slope at the beginning of the interval, using y,

An Overview of Ordinary Differential Equations 30

• k2 is the slope at the midpoint of the interval, using y and k1,

• k3 is the slope at the midpoint of the interval, using y and k2,

• k4 is the slope at the end of the interval, using y and k3.

Example 2.7. Use Euler’s and RK4 methods with h = 0.1 to approximate
the following IVP at the indicated value

y′ = 2x− 3y + 1, y(1) = 5. (2.20)

To measure how effective each of the methods are, let’s use the absolute error,
which is defined by

absolute error = |exact value− approximate value|.

It is not always the case that we know the exact value, but because it is an
IVP that has an exact solution that can be found by analytical methods,
let’s use it to compare how our numerical methods hold.

xn
Exact
Value

Euler RK4
Absolute Error

Euler
Absolute Error

RK4
1 5.0000 5.0000 5.0000 0.0000 0.0000

1.1 3.9723 3.8000 3.9724 0.1723 0.0001
1.2 3.2283 2.9800 3.2284 0.2483 0.0001
1.3 2.6944 2.4260 2.6945 0.2684 0.0001
1.4 2.3161 2.0582 2.3162 0.2579 0.0001
1.5 2.0532 1.8207 2.0533 0.2325 0.0001

Table 2.1: Approximated values and absolute errors of IVP 2.20 with Euler
and RK4 methods.

As can be observed in Table 2.1 and Fig. 2.2, the results are overwhelming.
Even with a relatively “big” step-size of h = 0.1 and with a precision of four
decimal points, the absolute errors of the RK4 method are extremely small
compared to the absolute errors of Euler’s method. This means the RK4
approximations are very close to the real value; therefore, the Runge-Kutta
method of order 4 is a very good way to approximate the solution of an initial
value problem.

Numerical Solution of Ordinary and Delay Differential Equations 31

Figure 2.2: Plot of the exact solution and approximations with Euler and
RK4 methods of IVP 2.20.

2.7 Applications of Ordinary Differential Equa-

tions

As we have stated previously, ordinary differential equations are useful when
we want to model real-life phenomena in many academic fields such as
physics, chemistry, biology, etc. In this section, we look into a couple of ways
differential equations are used to help understand certain problems that arise
from disciplines other than mathematics.

Lotka-Volterra Equations

The Lotka-Volterra equations are a pair of first-order differential equations
used to describe the changes of a biological system in which two species

An Overview of Ordinary Differential Equations 32

interact, the predator and the prey. The populations of the two species at
any time are given by positive parameters α, β, γ and δ, which have their
own biological meaning. The model is formed with these two equations:

dx

dt
= αx− βxy,

dy

dt
= −γy + δxy,

where:

• x is the population of the prey,

• y is the population of the predator,

• t represents time,

• α represents the maximum prey per capita growth rate,

• β represents the effect of the presence of the predators on the prey
death rate,

• γ represents the predator’s per capita death rate,

• δ represents the effect of the presence of prey on the predator’s growth
rate.

If we know what the populations of the two species are at a certain time,
let’s say t = 0, and the values of the parameters, then we can use our model
to find out how the number of prey and predators will behave over time. We
look at an example to see how this model works.

Example 2.8. Let’s suppose we have an environment consisting of only two
species, rabbits (prey) and foxes (predator), and that their initial population
is 40 and 15, respectively. Let’s assume the parameters α, β, γ, δ of our
environment are: 1.0, 0.1, 1.0, and 0.05, respectively.
Using the information given in the last statement and the Lotka-Volterra
equations, we can form a model that describes how the population of our
two species will behave as time changes. Let’s denote with the variable R
the number of rabbits and F the number of foxes. Then, the Lotka-Volterra
equations for our example are:

dR

dt
= 1.0R− 0.1RF R(0) = 40,

dF

dt
= −1.0F + 0.05RF F (0) = 15.

(2.21)

Numerical Solution of Ordinary and Delay Differential Equations 33

Since it is a fairly simple system, we can use a basic method like Euler’s
Method to solve our system. With a step-size of h = 0.001, we obtain a good
solution.

Figure 2.3: Population of rabbits and foxes of 2.21 with Euler’s Method.

Newton’s Law of Cooling

In physics, Newton’s law of cooling is used to describe the rate at which a
body loses heat through radiation. This rate of heat loss is directly pro-
portional to the difference in the temperatures between the body and the
ambient temperature [8]. Newton’s law of cooling is given by the following
first-order differential equation:

dT

dt
= k(T − Tm), (2.22)

where:

• T is the temperature of the object,

• k is a constant of proportionality,

An Overview of Ordinary Differential Equations 34

• Tm is the ambient temperature,

• t is time.

The greater the difference between the temperature of the object and its sur-
roundings, the faster the body temperature changes. We look at an example
to see how this law is used.

Example 2.9. Suppose we are trying to cool down a batch of cooking oil to
store it. The oil was heated to a temperature of 180°C and it cooled down
to 160°C in 8 minutes. How long will it take to cool down to a temperature
of 30°C with a surrounding temperature of 20°C?
First of all, for simplicity purposes, let’s suppose the ambient temperature
stays constant. Using Newton’s law of cooling and the provided data, we
arrive at the following initial-value problem

dT

dt
= k(T − 20), T (0) = 180. (2.23)

The differential equation 2.23 is clearly linear and separable, so we can sep-
arate the variables and get

dT

T − 20
= kdt.

Integrating both sides we obtain ln |T − 20| = kt + c, which implies T =
20 + cekt. At t = 0 we have that T = 180, so 180 = 20 + c gives that
c = 160. Therefore we have T = 20 + 160ekt. Using the fact that T (8) = 160
to find the value of k, 160 = 20 + 160e8k, when solving for k yields a value
of k ≈ −0.016691. Thus, the solution of 2.23 is

T (t) = 20 + 160e−0.016691t. (2.24)

To find how long it will take for the oil to cool down to 30°C we simply use
the general solution 2.24 when T = 30

30 = 20 + 160e−0.016619t.

And solving for t we find out that it will take approximately 167 minutes for
the oil to cool down to a temperature of 30°C with an ambient temperature
of 20°C.

Numerical Solution of Ordinary and Delay Differential Equations 35

Figure 2.4: Solution of 2.23.

Introduction to Neural Networks 36

Chapter 3

Introduction to Neural
Networks

In this chapter, we provide a brief introduction to the theory of neural net-
works. We start by examining the elements that make up a neural network,
and after that, we explore the different types of neural networks and how
they are classified based on their structure. Then, we look into the role that
activation functions play in neural networks and how they are used to match
complex data. Next, we go in-depth into the learning part of neural networks.
We go over how these models are optimized with the use of a loss function
that quantifies the performance of the model. After that, we explore the
role the backpropagation algorithm has in the training of a neural network.
Then, we go over the methods in which the loss function is minimized with
the help of gradient descent and automatic differentiation. And finally, we
examine the theory behind Physics-Informed Neural Networks, while explor-
ing an important theorem for function approximation using neural networks.

3.1 Overview

A neural network is a model of artificial intelligence that is based on the
organizational structure of the human brain. Neural networks are effective
when trying to predict the outcome of an event when they have been trained
with a large database of examples. These networks are adaptive, which means
that they can learn from their mistakes and improve the model continuously.

Numerical Solution of Ordinary and Delay Differential Equations 37

Figure 3.1: Structure of a neural network

3.2 Structure of a Neural Network

In its simplest definition, a neural network is just a directed graph that can
process information, and like all graphs, a neural network is also made up of
nodes and edges. The nodes of a neural network are the ones responsible for
the processing of the information. These nodes are all neatly organized in
what we call a layer of a neural network. We can then classify the layers of a
neural network into three basic layers: the input layer, the hidden layers, and
the output layer. Each of these layers has a finite number of nodes, which
we will start referring to as artificial neurons.
Inside every artificial neuron of the network, we have what we call an acti-
vation function, which we will be discussing in a later section.
Every node inside each hidden layer of a neural network is connected to every
node in the previous and following layer. The links between nodes are called
connections or edges. These connections are unidirectional, which means
that information can move only in a single direction. In Fig. 3.1 we can see
the usual structure a neural network has [17, 28].

Introduction to Neural Networks 38

3.2.1 Neural Networks and the Brain

As mentioned previously, an artificial neural network is loosely modeled after
the human brain. In this section, we seek to view the comparison between
these computational models and the human brain. Firstly, without going
into much detail, let’s look at how a human neuron is made up, and then
we discuss how the neurons in our brain communicate and work together in
order for us to do anything with our body.
If we look at the structure of a single neuron of the human brain, broadly
speaking, it consists of only three parts: the cell body, the axon, and the
dendrites. The cell body contains the nucleus of the neuron, which is re-
sponsible for controlling the activity of the cell. The axon, which looks like
a long stem, is in charge of sending messages from the cell. And lastly, the
dendrites, which look like branches from a tree, are the ones responsible for
receiving messages from other cells [2].
Our human brain consists of approximately 1011 neurons, and they commu-
nicate with each other via electrical signals [16]. Each one of our neurons
can receive a vast number of signals from other neurons. All of these signals
eventually reach the nucleus of the neuron, where they come together, and
if the signal coming from the dendrites is strong enough, then the signal is
transmitted forward to other neurons through the axon.

3.2.2 Layers of a Neural Network

As stated earlier, neural networks are formed by layers of connected nodes.
Generally speaking, every one of these layers can be classified within three
categories, which are the following:

• Input layer: The input layer is the one responsible for processing the
real-world data we feed the neural network. Once the input layer has
processed, analyzed, and categorized the data, it is passed on to the
next layer. It can have one or multiple nodes, based on the specific
problem we are solving. (Green in Fig. 3.1)

• Hidden layers: The hidden layers take their input from the input layer
or other hidden layers. Every hidden layer takes the data from the
previous layer, where it is then processed further and passed into the
next layer. A neural network can have as many hidden layers as we

Numerical Solution of Ordinary and Delay Differential Equations 39

desire(or as many as our computational power can handle). (Red in
Fig. 3.1)

• Output layer: The output layer gives the final result from all the pro-
cessing by the neural network. It can have single or multiple nodes,
depending on the problem we are dealing with. (Purple in Fig. 3.1)

3.3 Types of Neural Networks

Artificial neural networks can be categorized into two major types: shallow
neural networks and deep neural networks. The biggest difference in these
two types of networks is in the number of hidden layers they have. Shal-
low neural networks are usually way simpler than deep neural networks, so
choosing the appropriate type of network for a given task is crucial to save
time and resources.

3.3.1 Shallow Neural Networks

Shallow neural networks(SNNs) are known for their fairly simple architec-
ture. This type of network consists of the same three layers we previously
discussed: an input layer, a hidden layer, and an output layer. But, for it
to be categorized as a shallow neural network, it must only have one hid-
den layer. Due to their sheer simplicity, this type of network is known for
its low complexity and limited learning capacity. Also, thanks to their ba-
sic structure, they require fewer computational resources than a deep neural
network.
Even though these networks are somewhat basic, they still have their uses
in some cases. For example, they might be used on problems like binary
classification. We look into two examples of shallow neural networks: the
single-layer perceptron and the single-layer neural network.

Single-Layer Perceptrons

A perceptron is a type of artificial neuron that takes several binary inputs
x1, x2, . . . , xn to produce a single binary output.
The binary inputs are then multiplied by real numbers w1, w2, . . . , wn called
weights, which are used to express the importance the respective input should
have in the final output. The perceptron’s output is determined by the sum

Introduction to Neural Networks 40

Figure 3.2: Structure of a perceptron

∑n
k=1 wkxk and a threshold value. If this sum is greater than the threshold

value, then the perceptron’s output is 1, and if the sum is less than the
threshold value, then the perceptron’s output is 0. In mathematical symbols,
a perceptron’s behavior can be written in the following way:

output =

{
1 if

∑n
k=1wkxk > threshold value,

0 if
∑n

k=1wkxk ≤ threshold value.

A single-layer perceptron is a network consisting of a single perceptron in a
single layer. Since this is one of the simplest setups you can build, it does
not have many practical uses. Thanks to the binary output of the single-
layer perception, they are capable of making decisions based on the values
we assign as inputs and weights [22].

Single-Layer Neural Networks

Instead of being made of perceptrons, a single-layer neural network is made
of artificial sigmoid neurons. Sigmoid neurons are also capable of receiving
inputs x1, x2, · · · , xn, but unlike perceptrons, these inputs can take any nu-
merical value between 0 and 1. Also similar to the perceptron, a sigmoid
neuron has weights w1, w2, · · · , wn for every input, as well as a bias, which
is equivalent to the threshold value from the perceptron.
A key difference from the perceptron is that a sigmoid neuron can output any
real number between 0 and 1, instead of a binary output. To get the output
value of our neuron, we multiply every input and its corresponding weight
and add them, then we add the bias to this sum. To obtain the output value,
we use a sigmoid function, which is defined by

σ(z) =
1

1 + e−z
.

Numerical Solution of Ordinary and Delay Differential Equations 41

Mathematically, the output of a sigmoid neuron is

output = σ

(
n∑

k=1

wkxk + b

)
.

Figure 3.3: Structure of a sigmoid neuron

A single-layer neural network is the simplest artificial neural network model.
It consists of sigmoid neurons organized in the same three layers: input,
hidden, and output layers. Its layers can have as many sigmoid neurons as
necessary, but it can only have one hidden layer.

3.3.2 Deep Neural Networks

Deep neural networks (DNNs) are another category of artificial neural net-
works. They get their name from the fact that these networks can be quite
deep, as they have multiple hidden layers stacked one after the other between
the input and output layers. A deep neural network may have thousands of
layers, each with hundreds of neurons making computations. Therefore, the
deeper the network, the more computational resources it needs to be imple-
mented. Thanks to their more complex architecture, however, DNNs have
a higher learning capacity than SNNs. This higher learning capacity makes
them especially useful for applications like image and speech recognition,
natural language processing, and computer vision [31].

Feed-Forward Neural Networks

Feed-forward neural networks are the quintessential model of deep neural
networks. In this type of network, information is always fed forward, from
the input layer through the hidden layers to the output layer. Each layer
receives an input from the previous layer, processes it, and outputs it to

Introduction to Neural Networks 42

Figure 3.4: Structure of a Single Layer Neural Network

the next layer. There are no feedback connections in the network through
which the model’s information can be fed back into itself. So, there are
no connections from a neuron to itself, nor from a neuron to a neuron in a
previous layer [15].
Feed-forward neural networks are used in a variety of tasks, like pattern and
image recognition. Another application of this kind of network is in the
medical field, where diseases can be detected by analyzing patients’ data.

3.4 Activation Functions

As we stated in the last section, to get the output of a single neuron, we have
to pass the weighted sum through a function we called the sigmoid function.
Now we discuss why using these kinds of functions is important when working
with neural networks.
The use of nonlinear activation functions, like the logistic function or the
hyperbolic tangent, allows neural networks to introduce nonlinearity to the
model. If we were only to use linear activation functions, our network would,

Numerical Solution of Ordinary and Delay Differential Equations 43

Figure 3.5: Structure of a Feed-Forward Neural Network

at most, be able to perform simple linear regression regardless of how many
layers it has. Because most of the real-world data is nonlinear, it is nec-
essary to use nonlinear activation functions to model complex patterns and
relationships in the data [20].
It is important to note that the activation function doesn’t necessarily need
to be the same for every layer of a neural network; in a few cases, some
activation functions cannot be used in the final layer.
On Table 3.4, a few examples of activation functions are shown [13, 29].

Introduction to Neural Networks 44

Activation Functions

Name Expression Graph

Binary
Step

Φ(x) =

{
1 x ≥ 0

0 x < 0

Linear Φ(x) = ax a ∈ R

Sigmoid Φ(x) =
1

1 + e−x

Numerical Solution of Ordinary and Delay Differential Equations 45

Name Expression Graph

Hyperbolic
Tangent

Φ(x) =
ex − e−x

ex + e−x

Rectified
Linear
Unit

(ReLU)

Φ(x) = max(0, x)

Leaky
ReLU

Φ(x) =

{
x x ≥ 0

0.01x x < 0

3.5 Training of Neural Networks

3.5.1 Optimizing a Neural Network

Loss Function

We first look into the loss function and the importance it has when optimizing
a neural network. The loss function is one of the most important aspects of

Introduction to Neural Networks 46

a neural network as it enables us to optimize the model and fit it to the
training data.
To properly train a neural network, we first need to define a way to measure
how our model is performing. To achieve this, we build a function that
compares the neural network’s output with the actual value it is supposed to
be. The output of a neural network depends on the parameters of the network
and the input data we feed it. Because we cannot change the input data,
which usually comes from real-world data, the only option left to improve
the model is by modifying and adjusting the parameters (weights and biases)
of the network.
We define a loss function that depends on the n parameters of the neural
network and yields a real number that describes how the model is behaving.
We use this function to quantify the difference between the output of our
model and the actual truth value. We define this loss function as follows:

L(ω, b) =
1

N

N∑
i=1

(yi − ŷi)
2, (3.1)

where N is the number of training inputs, yi are the true values and ŷi are
the output values of the network. This type of loss function is also often
called the mean squared error (MSE) loss function. There are other ways of
computing this error; an example is the mean absolute error (MAE), which,
instead of adding quadratic terms, adds the absolute value of the difference
between the true value and the predicted value. For the remainder of this
thesis, we only use the MSE formula for computing the loss function.
Clearly, L ≥ 0 for any choice of parameters the network takes. Note that L
becomes small when a significant number of ŷi’s are close to their yi coun-
terpart, that is, the value of the loss function becomes smaller as our model
becomes better at predicting the true value. On the other hand, L becomes
large when a considerable number of ŷi’s are far from their yi counterparts.
Therefore, we are interested in finding a set of weights and biases that mini-
mize the loss function to improve our model.

Backpropagation

Now we look at the backpropagation algorithm used to minimize the loss
function.
In single-variable calculus, we use derivatives to find the instantaneous rate
of change of a function at any point. In other words, the derivative of a

Numerical Solution of Ordinary and Delay Differential Equations 47

single variable function at a given point represents how much the output of
the function changes in response to changes in the input. When working
in multivariable calculus with functions of more than one variable, we use
partial derivatives to measure how the output reacts to changes in one of the
function’s input variables.
When working with an n variable loss function, we need to calculate the
partial derivative of the loss function with respect to every parameter to
determine how each parameter changes the output of the function. To per-
form these calculations, we use the generalized version of the chain rule for
derivatives.

Theorem 3.1 (Multivariable Chain Rule)
Let u = f(x1, x2, . . . , xn) be a differentiable function of n variables, also
for i ∈ {1, . . . , n} let xi = (t1, t2, . . . , tm) be a differentiable function of m
variables. Then for every j ∈ {1, . . . ,m}

∂u

∂tj
=

∂u

∂x1

∂x1

∂tj
+

∂u

∂x2

∂x2

∂tj
+ · · ·+ ∂u

∂xn

∂xn

∂tj
.

Proof. Can be found in [30].

With the help of the chain rule, we can calculate the impact any given pa-
rameter has on the output of the network. Let’s look at an example to see
how it works.
Suppose we have a neural network consisting of a single input neuron, a
single hidden neuron, and a single output neuron. Let x be the input of the
network and y the true value. Let’s denote as ω1 the weight of the hidden
layer neuron, and ω2 the weight of the output layer neuron. Similarly, b1 and
b2 as the biases associated with the neurons of the hidden and output layers,
respectively. Also, let σ be any activation function.
First, we need to perform the forward pass, propagating the input data
through the network. We must determine the weighted sum and apply the
activation function at every layer.
For the hidden layer:

h1 = ω1 · x + b1,

We now apply the activation function and get the output of the hidden layer

z1 = σ(h1).

Introduction to Neural Networks 48

For the output layer, we have

h2 = ω2 · z1 + b2.

Finally, we apply σ to get the final output of the network

z2 = σ(h2).

Explicitly, the output of the network is

ŷ = σ(ω2 · z1 + b2) = σ(ω2 · σ(h1) + b2) = σ(ω2 · σ(ω1 · x + b1) + b2).

We compute the loss function using the MSE formula

L =
1

2
(y − ŷ)2.

To get the influence of each parameter on the output, we calculate the partial
derivative of the loss function with respect to each parameter using the chain
rule.
For ω1:

∂L
∂ω2

=
∂L
∂ŷ

∂ŷ

∂ω2

.

Computing both partial derivatives yields

∂L
∂ω2

= −(y − ŷ) · σ′(h2)z1.

For ω1:
∂L
∂ω1

=
∂L
∂ŷ

∂ŷ

∂z1

∂z1
∂ω1

.

Computing the three derivatives yields

∂L
∂ω1

= −(y − ŷ) · σ′(h2)ω2 · σ′(h1)x.

Similarly for b1 and b2:

∂L
∂b2

=
∂L
∂ŷ

∂ŷ

∂b2
= −(y − ŷ) · σ′(h2),

∂L
∂b1

=
∂L
∂ŷ

∂ŷ

∂z1

∂z1
∂b1

= −(y − ŷ) · σ′(h2)ω2 · σ′(h1).

We have determined how each parameter impacts the output of the network.
Now, we need to modify these parameters to improve our model.

Numerical Solution of Ordinary and Delay Differential Equations 49

Gradient Descent and Optimizers

We look into the algorithm of gradient descent used to optimize neural net-
works. The loss function depends on the n parameters of the neural network,
so our main objective is to optimize our network by finding a set of parame-
ters that yields the smallest loss values. That is, we are interested in finding
a local (or global) minimum of the loss function.
The vector containing all partial derivatives of a function is called the gradi-
ent of a function [3].

Definition 3.1 (Gradient of a function). Let f : Rn → R differentiable at
a ∈ Rn. The gradient ∇f : Rn → Rn of f at a is an n-dimensional vector
defined as

∇f(a) =

(
∂f

∂x1

(a),
∂f

∂x2

(a), · · · , ∂f
xn

(a)

)
.

The gradient has a very helpful property for optimizing the function. The
gradient vector is the direction in which the function increases most rapidly;
in other words, the gradient is the direction of steepest ascent of the function.
But, if we take the negative of the gradient, we go in the direction in which
the function decreases most rapidly; this is, −∇f indicates the direction of
steepest descent of the function [10].
Every partial derivative has already been computed thanks to the backprop-
agation algorithm; thus, we already have the gradient of the loss function.
We need to decide how much we advance towards this direction. To get
the distance we move, we define a new hyperparameter called the learning
rate, η > 0. The learning rate scales the gradient, controlling how much we
advance.

step-size = η · ∇L.
As we are minimizing the function, we need to subtract the step-size from
the current parameters to get the new updated parameters of the network

ωt+1 = ωt − η∇L,

where ωt represents the weights at the current time. The choice of an appro-
priate value of η is crucial for efficient training of the network, as choosing
a high learning rate might take bigger steps and overshoot the minimum
(exploding gradients). Choosing a small learning rate can make the model
take tiny steps close to 0 and take a lot of time to converge to a minimum
(vanishing gradients).

Introduction to Neural Networks 50

We iteratively run the gradient descent until we reach the limit of iterations
we desired, or until the step-size is smaller than an ϵ > 0.

Algorithm 1 Gradient Descent

Initialize ω0 arbitrarily
Choose η > 0
Choose N > 0
for k = 0, 1, 2, . . . , N do

gk ← ∇L(ωk)
ωk+1 ← ωk − ηgk

end for

Algorithm 1 shows the pseudocode for the gradient descent algorithm, the
foundational algorithm of neural network optimization. It is simple to un-
derstand and implement, but it can be computationally expensive to use
when working with large datasets, as the gradient is calculated using the en-
tire dataset. We look into a few optimization algorithms based on gradient
descent. These new algorithms are variants of vanilla gradient descent, mak-
ing it faster and more efficient. We go over the development of optimizers
through the years, culminating in the optimization algorithm we used for
this thesis, the Adam optimizer.

Stochastic Gradient Descent The algorithm of stochastic gradient de-
scent (SGD) is a simplification of the gradient descent algorithm. In this
approach, the gradient is approximated by a subset or mini-batch of the
data at every iteration, making it computationally cheaper and faster to run
than vanilla gradient descent. At every epoch, the mini-batch of data is cho-
sen randomly (the reason for calling it stochastic). The main advantage of
SGD is that it is effective to use when working with large datasets. The noise
produced by the stochastic nature of SGD can be beneficial or detrimental
to the convergence to a minimum. This noise can help the algorithm escape
local minima of the loss function; thus, it is possible to find an even better
minimum that optimizes the model even further. But the noise can also make
the algorithm oscillate around the minimum instead of directly converging
to it [24].
The pseudocode for stochastic gradient descent can be seen in Algorithm 2.
As the gradient is computed at a subset of the entire dataset, it allows the

Numerical Solution of Ordinary and Delay Differential Equations 51

Algorithm 2 Stochastic Gradient Descent (SGD) [9]

Initialize ω0 arbitrarily
Choose η > 0
Choose N > 0
for k = 0, 1, 2, . . . , N do

Draw ξk ⊂ D
gk ← ∇L(ξk)
ωk+1 ← ωk − ηgk

end for

algorithm to run more iterations within a fixed time frame, as compared with
standard gradient descent.

SGD with Momentum Optimization algorithms with momentum recog-
nize that consistent movement in a particular direction over a medium to
long term is beneficial for convergence, and this is done by minimizing the
impact of local distortions in the loss function. We utilize momentum by set-
ting a new hyperparameter β ∈ (0, 1) (sometimes called friction parameter)
which represents a fraction of the parameters in the previous step; hence, β
represents the influence of past gradients in the current parameter update.
If we set β = 0, we have the standard SGD algorithm. We call it the fric-
tion parameter because small β’s act as a brake for the optimization process.
Adding momentum to SGD helps the algorithm with the noise, smoothing
out oscillations caused by the stochastic part of SGD. Also, with momentum,
the algorithm can skip over local minima or navigate through flat regions,
which helps improve the model.
Pseudocode for SGD with Momentum is presented in Algorithm 3. Adding a
momentum term to standard SGD enhances the algorithm, as this term can
help accelerate the learning process by taking into consideration consistent
gradient directions.

AdaGrad The AdaGrad algorithm, short for adaptive gradient, is an op-
timization algorithm that adjusts the learning rate for each parameter rather
than having a fixed learning rate. For each parameter, AdaGrad keeps track
of the gradient value at every step, using this to scale the learning rate on a
per-parameter basis. Thanks to storing the squared gradients over time, the
AdaGrad algorithm updates infrequent parameters with more updates than

Introduction to Neural Networks 52

Algorithm 3 SGD with Momentum [9]

Initialize ω0 arbitrarily
Choose η > 0,β > 0
Choose N > 0
v0 ← 0
for k = 0, 1, 2, . . . , N do

Draw ξk ⊂ ωk

gk ← ∇L(ξk)
vk+1 ← βvk + ηgk
ωk+1 ← ωk − vk+1

end for

frequent parameters, which makes it especially useful when working with
sparse data. The way AdaGrad computes the learning rate and updates
each parameter is shown next. Let Si,k be the accumulated squared gradient
of the i-th parameter at iteration k. For every step, each Si is updated as
follows

Si,k = Si,k + (gi,k)2,

where gi,k is the value of the gradient of the i-th parameter at step k. Then
each parameter is updated

ωi,k+1 = ωi,k −
η√

Si,k + ϵ
gi,k.

ωi,t indicates the i-th weight at time t, and ϵ is a small value, such as 10−8,
to avoid division by zero. From now on, we will use vector notation for
simplicity, where all the operations are performed on an element-wise basis.
Thus, the above equations will now be written as:

Sk = Sk + g2
k,

ωk+1 = ωk −
η√

Sk + ϵ
gk.

The pseudocode for the AdaGrad optimizer is found in Algorithm 4. Thanks
to the per-parameter basis the learning rate takes, the optimizer is capa-
ble of fine-tuning each parameter based on its historical gradients. A major
disadvantage of AdaGrad is the accumulation of square gradients in the de-
nominator. This causes the learning rate to become smaller to the point

Numerical Solution of Ordinary and Delay Differential Equations 53

Algorithm 4 AdaGrad [1]

Initialize ω0 arbitrarily
Choose η > 0,β > 0
Choose N > 0
Set ϵ = 10−8

S0 ← 0
for k = 0, 1, 2, . . . , N do

Draw ξk ⊂ ωk

gk ← ∇L(ξk)
Sk ← Sk + g2

k

ωk+1 ← ωk −
η√

Sk + ϵ
gk

end for

that it becomes infinitesimally small, preventing the algorithm from further
optimization.

RMSProp Now we look at the Root Mean Square Propagation optimiza-
tion algorithm, or RMSProp for short. Like AdaGrad, it computes an adap-
tive learning rate for each parameter; however, the calculation is done dif-
ferently. RMSProp addresses one of AdaGrad’s main problems, which is the
diminishing values for the learning rate caused by the addition of the squared
gradients throughout the run time of the algorithm. Instead, the RMSProp
algorithm uses an exponentially decaying average of squared gradients. Do-
ing this prevents the learning rate from shrinking excessively by reducing the
impact of past gradients. We introduce a decay factor ρ ∈ (0, 1) that weighs
the past gradients to weaken their impact. We multiply ρ by the aggregate
of the squared gradients, and then we add (1−ρ) times the squared gradient
at the current epoch. For each parameter i, we have

Sk = ρSk + (1− ρ)g2
k.

Then all the parameters are updated

ωk+1 = ωk −
η√

Sk + ϵ
gk.

RMSProp’s pseudocode is shown in Algorithm 5. Similar to AdaGrad, RM-
SProp features a dynamic learning rate that varies for each parameter. On

Introduction to Neural Networks 54

Algorithm 5 RMSProp [1]

Initialize ω0 arbitrarily
Choose η > 0
Choose ρ ∈ (0, 1)
Choose N > 0
Set ϵ = 10−8

S0 ← 0
for k = 0, 1, 2, . . . , N do

Draw ξk ⊂ ωk

gk ← ∇L(ξk)
Sk ← ρSk + (1− ρ)g2

k

ωk+1 ← ωk −
η√

Sk + ϵ
gk

end for

the other hand, RMSProp addresses AdaGrad’s main disadvantage by up-
dating the parameters based on the exponentially decaying average of the
squared gradients, instead of simply accumulating them.

Adam The Adaptive Moment Estimation optimizer (Adam for short) is
one of the most commonly used optimizers, combining the foundation of
RMSProp and momentum-based optimization. Instead of applying the cur-
rent gradients, Adam optimizer applies momentum like in the SGD optimizer
with momentum, and similar to RMSProp, it applies an adaptive learning
rate to each parameter based on its past gradients. The Adam optimizer
stores the exponentially decaying average of squared gradients (like RM-
SProp), as well as an exponentially decaying average of past gradients (sim-
ilar to momentum). Two new decay rates β1 and β2 are introduced, then
the first momentum (the mean) and the second momentum (the uncentered
variance) of the gradients are estimated as follows:

mk = β1mk−1 + (1− β1)gk,

vk = β2vk−1 + (1− β2)g
2
k.

As both mk and vk are initialized at zero, during the early steps, they are
biased towards zero. To counteract this, a bias correction is performed on

Numerical Solution of Ordinary and Delay Differential Equations 55

the first and second moments:

m̂k =
mk

(1− βk
1)
,

v̂k =
vk

(1− βk
2)
,

with βt
1 and βt

2 being the decay rates β1 and β2 to the power k. Then the
parameters are updated

ωk = ωk−1 −
η√

v̂k + ϵ
m̂k.

Algorithm 6 Adam [19]

Initialize ω arbitrarily
Choose η > 0
Choose β1, β2 ∈ [0, 1)
Choose N > 0
Set ϵ = 10−8

m0 ← 0
v0 ← 0
for k = 0, 1, 2, . . . , N do

Draw ξk ⊂ ωk

gk ← ∇L(ξk)
mk ← β1mk−1 + (1− β1)gk

vk ← β2vk−1 + (1− β2)g
2
k

m̂k ←
mk

(1− βk
1)

v̂k ←
vk

(1− βk
2)

ωk ← ωk−1 −
η√

v̂k + ϵ
m̂k

end for

The pseudocode for the Adam optimizer is presented in Algorithm 6. The au-
thor’s default settings are α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8. The
Adam optimizer combines the advantages of both AdaGrad and RMSProp
algorithms, while also requiring little memory and being straightforward to
implement. This makes Adam a robust choice for a wide range of optimiza-
tion problems in machine learning.

Introduction to Neural Networks 56

Figure 3.6: Optimizer development timeline [33]

The development of optimization theory is shown in Fig. 3.6. It starts from
simpler algorithms like SGD and SGD with Momentum algorithms, and ends
with more recent and more complex algorithms like the Adam optimizer.

3.5.2 Automatic Differentiation

We look into automatic differentiation (sometimes called autodiff), which is
an algorithm used to compute the partial derivatives of a function. Com-
putation of derivatives in computers can be divided into four categories: a)
manually calculating the derivatives and coding them directly, b) numeri-
cal differentiation, c) symbolic differentiation, and d) automatic differentia-
tion. Manually computing the derivatives and coding them is time-consuming
and inefficient, while using numerical differentiation can be inaccurate due
to rounding and truncation errors. Using symbolic differentiation can lead
to complex expressions and inefficient code, which becomes the ”expression
swell” problem [4]. Thus, the autodiff algorithm was developed to numeri-
cally evaluate derivatives of functions. The main idea behind autodiff is to
break down the function into a sequence of arithmetic operations and elemen-
tary functions, then apply basic derivative rules (like the power rule, product
rule, etc) to compute the full derivative of the function with the help of the
chain rule.
We break down the evaluation of a function with the help of computational
graphs. A computational graph is a directed graph that represents the pro-
cess by which a mathematical expression is computed. The nodes of the
graph represent the operations (addition, multiplication, etc) or elementary
function evaluation (cosine, logarithm, etc), and the edges of the graph rep-
resent the flow of the data between the operations. The evaluation of any
function is the composition of a finite number of elementary operations with
known derivatives. Suppose we have a function f : Rn → R, to construct the
computational graph of f we use intermediate variables vi such that:

Numerical Solution of Ordinary and Delay Differential Equations 57

Figure 3.7: Computational graph of the function 3.2.

• vi = xi, i = 1, . . . , n are the input values;

• vi, i = n, . . . , k are the intermediate variables;

• y=vk+1 is the output value.

Figure 3.7 shows the computational graph of the two-variable function:

f(x1, x2) = sinx1 + ex2 − x1x2. (3.2)

Table 3.2 shows the evaluation trace of computing f at x = (−3, 5).

Forward Mode We now look into the autodiff method of computing par-
tial derivatives in forward mode. To compute the derivative of function 3.2
with respect to x1 we define a partial derivative for each vi

v̇i =
∂vi
∂x1

i = 1, . . . , 7.

By applying the chain rule to each vi, we generate the derivative forward trace
of f with respect to x1 at x. Notice that by calculating v̇7, by definition of
y we also calculate the partial derivative of y = f(x1, x2) with respect to x1

(Table 3.3 shows these computations). To calculate the derivative of f with
respect to x2 we would have to do another forward pass. Thus, if we had
a function g : Rn → R and we wanted to calculate the gradient of g at a
given x ∈ Rn, then we would have to perform n forward passes of autodiff
to fully compute the gradient. This is highly inefficient, as for more complex
functions in large n means more time consumed and more computational
cost to calculate the gradient.

Introduction to Neural Networks 58

Table 3.2: Evaluation trace of 3.2 at x = (−3, 5).

Evaluation trace

v1 = x1 = −3

v2 = x2 = 5

v3 = sin v1 = sin(−3) = −0.141

v4 = ev2 = e5 = 148.4131

v5 = v1 × v2 = (−3)(5) = −15

v6 = v3 + v4 = −0.1411 + 148.4131 = 148.272

v7 = v6 − v5 = 148.272− (−15) = 163.272

y = v7 = 163.272

Numerical Solution of Ordinary and Delay Differential Equations 59

Table 3.3: Forward autodiff trace of 3.2 at x = (−3, 5).

Evaluation trace Forward AD trace

v1 = x1 = −3 v̇1 = 1

v2 = x2 = 5 v̇2 = 0

v3 = sin v1 = −0.141 v̇3 = cos (v1)v̇1 = −0.9899

v4 = ev2 = 148.4131 v̇4 = ev2 v̇2 = 0

v5 = v1 × v2 = −15 v̇5 = v̇1v2 + v̇2v1 = 5

v6 = v3 + v4 = 148.272 v̇6 = v̇3 + v̇4 = −0.9899

v7 = v6 − v5 = 163.272 v̇7 = v̇6 − v̇5 = −5.9899

y = v7 = 163.272
∂y

∂x1

= v̇7 = −5.9899

Introduction to Neural Networks 60

Reverse AD trace

v̄7 =
∂y

∂v7
=

∂

∂v7
v7 = 1

v̄6 =
∂y

∂v6
=

∂y

∂v7

∂v7
∂v6

= v̄7 × 1 = 1

v̄5 =
∂y

∂v5
=

∂y

∂v7

∂v7
∂v5

= v̄7 × (−1) = −1

v̄4 =
∂y

∂v4
=

∂y

∂v6

∂v6
∂v4

= v̄6 × 1 = 1

v̄3 =
∂y

∂v3
=

∂y

∂v6

∂v6
∂v3

= v̄6 × 1 = 1

v̄2 =
∂y

∂v2
=

∂y

∂v4

∂v4
∂v2

+
∂y

∂v5

∂v5
∂v2

= v̄4e
v2 + v̄5v1 = 151.4131

v̄1 =
∂y

∂v1
=

∂y

∂v3

∂v3
∂v1

+
∂y

∂v5

∂v5
∂v1

= v̄3 cos v1 + v̄5v2 = −5.9899

Table 3.4: Reverse autodiff trace of 3.2 at x = (−3, 5)

Reverse Mode Now we look into the reverse mode of calculating deriva-
tives. In this mode, the derivatives are computed backwards starting from
the output of the function. We define adjoint variables for each auxiliary vi
as follows

v̄i =
∂y

∂vi
.

If the i-th node has j successors, then the chain rule gives us

v̄i =
∑

j∈{next i}

v̄j
∂vj
∂vi

.

We calculate each v̄i propagating iteratively in reverse, beginning from the
function’s output. Returning to our example, Table 3.4 shows the computa-
tion of the autodiff algorithm in reverse mode.

Numerical Solution of Ordinary and Delay Differential Equations 61

Notice the rows highlighted in blue in Table 3.4, by definition v̄2 and v̄1 are
the partial derivatives of f with respect to x2 and x1, respectively. Thus,
we have computed the full gradient of f with a single pass of reverse mode
autodiff. The disadvantage of reverse mode is its storage requirement, as the
amount of storage needed grows proportionally to the number of operations
in the function (in the worst case scenario) [4].

3.6 Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) are a type of neural network
that is governed by physical laws described by differential equations. Unlike
traditional neural networks that require input data to learn, PINNs incorpo-
rate the knowledge from the physical system into the learning process. This
is done by directly incorporating the equations governing the system into the
loss function of the network.
In the following notation, t is the input of our network; therefore, the whole
network is a function of t. Also, N j

n denotes the j-th neuron in the n-th layer
of the neural network.

N1
0 (t) = t,

N j
m(t) = σ

(
hm−1∑
k=1

ω(j,k)
m N

(k)
m−1(t) + b(j)m

)
,

NF+1(t) =

hF∑
k=1

ω
(j,k)
F+1N

(k)
F (t) + b

(j)
F+1,

Output:
{
N

(j)
F+1(t)

}hF+1

j=1
.

Where:

• F is the number of hidden layers in the network,

• Lm is the m-th hidden layer,

• hm is the number of neurons in Lm,

• N1
0 (t) is the neuron in the input layer of the network,

• N j
m(t) denotes the j-th neuron in Lm,

Introduction to Neural Networks 62

• ω
(j,k)
m is the weight of the link connecting the k-th neuron in Lm−1 to

the j-th neuron in Lm,

• bjm is the bias associated to N j
m(t),

• σ is any activation function.

Note that the output is a collection of n nodes in the output layer. Also,
observe how when we go from the last of the hidden layers we have in our
network (hidden layer number F) to the layer F + 1 (the output layer), we
do not apply the activation function σ and we only take the weighted sum
of that neuron.
The Universal Approximation Theorem is a fundamental result in the field
of neural networks. In broad terms, it states that any continuous function
on a compact subset can be approximated by a feedforward neural network
containing a single hidden layer with a finite number of neurons using a
sigmoidal activation function (sigmoid, hyperbolic tangent, etc.).

Theorem 3.2
Let σ be any continuous sigmoidal function. Then, finite sums of the form

G(x) =
N∑
j=1

αjσ(yTj x + θj)

are dense in C(In)(n-dimensional unit cube). In other words, given any f ∈
C(In) and ϵ > 0, there is a sum, G(x) of the above form, for which

|G(x)− f(x)| < ϵ ∀x ∈ In.

Proof. The proof for this theorem can be found in Cybenko [12].

In the theorem above, N is the number of neurons in the hidden layer of the
neural network, αj are the output weights for the j-th neuron, yTj are the
input weights for the j-th neuron, x is the input of the network and θj are
the biases of the j-th neuron.
This means neural networks are not restricted to linear relationships; they
are capable of approximating non-linear complex relationships between in-
puts and outputs. Another consequence of this theorem is that a single-layer
neural network is enough to approximate any continuous function. This
means that given any continuous function, there exists a finite number of

Numerical Solution of Ordinary and Delay Differential Equations 63

neurons that can approximate the function. Although Theorem 3.2 shows
the existence of a neural network that can approximate any continuous func-
tion, it does not provide an algorithm to find the weights and biases that
approximate the function. This theorem demonstrates that a neural network
can be used as a universal function approximator.

Solving ODEs and DDEs Using Neural Networks 64

Chapter 4

Solving ODEs and DDEs Using
Neural Networks

In this chapter, we go over the inner mechanisms of the PINN method for
solving ODEs and DDEs. We start by constructing the loss function used to
approximate ODEs. Next, we construct the loss function for DDEs, along
with its small differences compared to the base ODE method. To conclude
this chapter, we will look at different examples of ODEs and DDEs, and
explain the different network configurations used to achieve our results.

4.1 How does it work

In the Physical-Informed Neural Network method of solving differential equa-
tions, the neural network is used to approximate a function. The idea is that
the function we approximate is the solution of the differential equation, given
an equation and a set of initial conditions. The input of the network is the
independent variable of the equation, such as time t, while its output u is
the approximation of the solution.
Suppose that we are interested in approximating the ordinary differential
equation:

F (x, y, y′, y′′, . . . , y(n)) = 0

y(x0) =y0, y
′(x0) = y1, . . . , y

(n−1)(x0) = yn−1.
(4.1)

The main idea behind PINN is to incorporate the physics that governs the
system into the training of the neural network. To use the PINN method, we

Numerical Solution of Ordinary and Delay Differential Equations 65

need a differential equation and a set of appropriate initial conditions. For
the training of the network, we build a loss function consisting of two parts:
the data loss and the physics loss.
For the physics loss part of the total loss function, we require that our ap-
proximation satisfies the differential equation for all t in a given interval.
Because it is impossible to work with a continuous interval, we sample a
finite number of points Nf within the desired interval; this set of points is
called collocation points. These points can be chosen at random through
a uniform distribution, or the points can be evenly distributed across the
interval. The latter has been chosen for this thesis. Selecting an appropriate
number of points Nf is important to achieve a good result. Choosing too
few points may lead to a ”crooked” approximation, while choosing too many
points might increase the program’s execution time or memory usage.
Suppose that the network’s input is a set of Nf points in the domain; we
denote this input by t, while the output of the network is given by u. Then,
the output of the network is a function of the parameters θ and input values
t; this is u(θ, t). Using the autograd algorithm, we can compute the partial
derivatives of u(θ, t) with respect to t. If u(θ, t) is a solution of the differential
equation 4.1, then it must follow that

F

(
t, u(θ, t),

∂u(θ, t)

∂t
,
∂2u(θ, t)

∂t2
, . . . ,

∂nu(θ, t)

∂tn

)
= 0.

Thus, we need to push F
(
t, u(θ, t), ∂u(θ,t)

∂t
, ∂

2u(θ,t)
∂t2

, . . . , ∂
nu(θ,t)
∂tn

)
toward zero.

We do this by measuring the distance between the true value, in this case
0, and the predicted value. This is done by using the Mean Squared Error
between both quantities, specifically

LODE =
1

Nf

Nf∑
i=1

(
F

(
ti, u(θ, ti),

∂u(θ, ti)

∂t
,
∂2u(θ, ti)

∂t2
, . . . ,

∂nu(θ, ti)

∂tn

)
− 0

)2

,

or simply

LODE =
1

Nf

Nf∑
i=1

(
F

(
ti, u(θ, ti),

∂u(θ, ti)

∂t
,
∂2u(θ, ti)

∂t2
, . . . ,

∂nu(θ, ti)

∂tn

))2

.

In the data loss part, we measure the discrepancy between the network’s
output and the true values at specific points, such as the initial conditions.

Solving ODEs and DDEs Using Neural Networks 66

This term guarantees that the network will fit the initial conditions of the
differential equation. Let NIC be the number of initial conditions of the
differential equation; then the data loss term is written as

LIC =
1

NIC

NIC∑
i=1

(utrue(ti)− uapprox(ti))
2,

or simply the Mean Squared Error between the predicted value given by the
network and the true value, given by the initial conditions of the differential
equation.
The total loss function of the neural network consists of a weighted sum of
these two terms

Ltotal = ωICLIC + ωODELODE,

where ωIC and ωODE are weighting terms. Therefore, by minimizing Ltotal

with a gradient descent-based optimizing algorithm, we are, in fact, solving
the differential equation 4.1.

4.2 Implementation

We discuss the implementation of the PINN method in Python using the Py-
torch library. As the implementation of ODEs and DDEs is slightly different,
we look at them separately.

4.2.1 Ordinary Differential Equations

When implementing for ordinary differential equations, the construction of
the loss function previously described is followed directly. The details of the
network employed vary from example to example, so they will be presented
thoroughly for each of our examples.

4.2.2 Delay Differential Equations

The implementation of delay differential equations differs from the imple-
mentation for ODEs, so we discuss it in detail.

Numerical Solution of Ordinary and Delay Differential Equations 67

Figure 4.1: The three regions we divide the [−τ, T] domain.

Suppose we are interested in solving the delay differential equation with a
single constant delay

y′(t) = f(t, y(t), y(t− τ)).

y(t) = ϕ(t), t ∈ [−τ, x0].
(4.2)

on the interval [x0, T], with τ > 0 and T > τ .
We split the [−τ, T] input interval into three subintervals: [−τ, x0], [x0, τ] and
[τ, T]. Furthermore, we denote these regions as R0, R1 and R2, respectively.
This division is shown in Figure 4.1. The input for this neural network is a
collection of points contained within the interval of the region we are working
with. We sample a number of S0, S1 and S2 collocation points on the R0, R1

and R2 regions, respectively. The selection of the number of points S0, S1

and S2 is done in a way such that the density of points is similar among the
three regions. The output of the network consists of three parts, each of these
parts corresponds to one of the three regions we input into the network. We
denote these outputs as: uR0 , uR1 and uR2 .
The loss function employed for DDEs consists of three terms, each one of
them corresponding to one of the subintervals of the domain. We go over the
construction of this loss function.
For the R0 region we have the interval [−τ, x0], this is t ≤ x0 for all t ∈ R0.
Thus, for this region, we want the output of the neural network to match the
initial condition function, ϕ(t), given by the DDE. Thus, the first part of the
loss function is simply given by

LR0 =
1

S0

S0∑
i=1

(ϕ(ti)− uR0(θ, ti))
2 .

Solving ODEs and DDEs Using Neural Networks 68

For the R1 region, we are situated on the interval [x0, τ], where we work with
the differential equation f(t, y(t), y(t − τ)). Notice the y(t − τ) term in the
differential equation, when we subtract τ to every t ∈ [x0, τ], this becomes
[−τ, x0]. As a result, in this case, the y(t − τ) values will essentially be the
y values in [−τ, x0]. But the y values in [−τ, x0] are the values given by the
initial condition function ϕ(t). Thus, for this region, the differential equation
will be f(t, y(t), ϕ(t − τ)). The input for this region are S1 points in the
[x0, τ] interval. We want the output for this region, uR1 , to be a solution to
the DDE in R1. This means that the derivative of our approximation with
respect to the input of this region should match the right-hand side of the
differential equation, with the approximation substituted in. Hence, the loss
function for R1 is

LR1 =
1

S1

S1∑
i=1

(u̇R1(θ, ti)− f(ti, uR1(θ, ti), ϕ(ti − τ)))2 .

For the R2 region we work on the [τ, T] subinterval and the differential equa-
tion f(t, y(t), y(t − τ)). We sample a total of S2 points in R2, which will
become the input of our network for this region. We desire the output for
this region, uR2 , to be a solution to the differential equation. Analogous
to the previous region, this implies that the derivative of the output has to
match the right-hand side of the differential equation substituted in by the
output in order for uR2 to be a solution on R2. Therefore, the loss function
for this region is

LR2 =
1

S2

S2∑
i=1

(u̇R2(θ, ti)− f(ti, uR2(θ, ti), uR2(θ, ti − τ)))2 .

Combining these three parts of the loss function, we end up with the total
loss function for delay differential equations

Ltotal = ωR0LR0 + ωR1LR1 + ωR2LR2 ,

where ωR0 , ωR1 and ωR2 are weighting terms. By minimizing this loss function
with a gradient descent-based algorithm, we are essentially solving the delay
differential equation 4.2.

Numerical Solution of Ordinary and Delay Differential Equations 69

4.3 Examples

We show a few examples where we used the PINN method to approxi-
mate differential equations. The code used for each example can be found
github.com/jcalvoq/thesisPINN.

4.3.1 Ordinary Differential Equations

Example with Known Solution

We begin with an example of a differential equation that has an analytic
solution. We approximate the following first-order initial value problem

dx

dt
+

x

5
= e−

t
5 cos(t), [21] (4.3)

with x(0) = 0 and t ∈ [0, 10]. The analytic solution to this IVP is given by
x(t) = e−

t
5 sin(t).

In this scenario, we compare the approximation given by the neural network
with the known exact solution. For this example, we give the explicit loss
function implemented. Let uT (θ, t) be a trial solution of the IVP. The physics
loss part is:

LODE =
1

Nf

Nf∑
i=1

(
u̇T (θ, ti) +

1

5
uT (θ, ti)− e−ti/5 cos(ti)

)2

.

Because we only have one initial condition NIC = 1, the data loss part of the
loss function is:

LIC = (uT (θ, t0)− 0)2.

For this example, ωIC = ωODE = 1/2. Then, the total loss function is:

Ltotal =
1

2
(LODE + LIC).

In this case, we used a network consisting of 4 hidden layers with 40 nodes
in each one, and sampled a total of 5000 uniformly spaced points in the
interval. The activation function used was the hyperbolic tangent throughout
the whole network, while the selected optimizer was the Adam optimizer with
the default learning rate of 1×10−3. Figure 4.2 shows how the approximation

https://github.com/jcalvoq/tesisPINN

Solving ODEs and DDEs Using Neural Networks 70

Figure 4.2: Evolution of approximations of IVP 4.3 and values of loss function
and exact error.

Numerical Solution of Ordinary and Delay Differential Equations 71

changed over time, as well as the behavior of the loss function and the exact
error in every epoch.
As it’s a fairly simple differential equation, it did not take a lot of time for
the model to converge to the exact solution. The final solution graph in Fig.
4.2 is the 10000th epoch we ran, and the approximation matched perfectly
with the exact solution.

Logistic Equation

We now look into the logistic equation, which is used to model population
growth with a carrying capacity. The population dynamic is given by the
first-order differential equation

dP

dt
= rP

(
1− P

K

)
,

where P represents the population size at any time t, r represents the growth
rate of the population, and K represents the carrying capacity, or the maxi-
mum population the environment can sustain.
In this case, we solve the logistic differential equation with parameters r = 1
and K = 2. We are interested in solving the differential equation on the
interval [0, 15], with an initial condition P (0) = 0.01. Thus, the differential
equation we look to solve is

dP

dt
= P

(
1− P

2

)
. (4.4)

For the network details for this example, we employed a neural network
consisting of 3 hidden layers, with a total of 40 nodes in each layer. We
deployed a total of 1,000 evenly spaced points on the [0, 12] interval. We
used the sigmoid activation function throughout the whole network. The
designated optimizer this time was the Adam optimizer, with a learning rate
of 1× 10−2. Because the logistic equation has a known solution, in this case
given by f(x) = 2ex

ex+199
, we compare our approximation to the exact solution

and compute the exact error. The evolution of the approximations over the
200,000 epochs we ran the program, as well as the values of the loss function
and the exact error values, are shown in Figure 4.3.
As can be seen in Fig. 4.3, the approximations start taking the shape of the
exact solution starting from the 10000th epoch, slowly ascending until the
180000th, where the approximation finally converges to the exact solution.

Solving ODEs and DDEs Using Neural Networks 72

Figure 4.3: Approximation history and loss function values of logistic equa-
tion 4.4.

Numerical Solution of Ordinary and Delay Differential Equations 73

The values of the loss function and exact error follow the behavior presented
by the approximations.
A small trick was used to make the approximation converge to the solution.
For the first 50,000 epochs, we placed an additional term for the loss function
to satisfy; we made it so that the last point in the collection of t values equaled
1 in our approximation. This is

LADD =
1

Nf

Nf∑
i=1

(
y(tNf

)− 1
)2

.

Thus, the loss function for this example is

Ltotal = ωICLIC + ωODELODE + ωADDLADD.

Note that we only compute this additional term for the first 50,000 epochs;
for the remainder of the program’s runtime LADD is equal to 0. If we were not
to add this new condition, the approximation stays in the unstable solution
P (t) = 0 for the entirety of the program’s execution, as can be seen in Fig.
4.4. So by adding this extra term to the computation of the loss function for
the first 50,000 epochs gives the approximation a small boost to escape the
unstable solution P (t) = 0.

Van der Pol Oscillator

Our next example will be the van der Pol oscillator, a second-order differential
equation that is a non-conservative oscillating system that evolves in time.
This oscillating behavior is given by the differential equation

ẍ− µ(1− x2)ẋ + x = 0,

where x is the position which depends on the time t, and µ is a parameter
that indicates the nonlinearity and the strength of the damping.
This equation cannot be solved with analytic methods; thus, an exact solu-
tion is impossible to find. Therefore, we use numerical methods in order to
approximate the solution to the differential equation.
In this case, we solve the equation with a parameter µ = 0.25 on the interval
t ∈ [0, 20]. With the initial conditions being x(0) = 1 and x′(0) = 1. Thus,
the IVP we look to approximate is

Solving ODEs and DDEs Using Neural Networks 74

Figure 4.4: Approximation of logistic equation 4.4 without the additional
condition.

ẍ− 0.25(1− x2)ẋ + x = 0,

x(0) = 1 ; ẋ(0) = 0.
(4.5)

The loss function for this example is thoroughly explained. Let uT (θ, t) be a
trial solution for the IVP. The physics loss part of the loss function is:

LODE =
1

Nf

Nf∑
i=1

(
üT (θ, ti)− 0.25(1− uT (θ, ti)

2)u̇T (θ, ti) + uT (θ, ti))
)
.

The data loss part of the loss function is:

LIC1 = (uT (θ, t0)− 1)2.

And for the initial condition involving the derivative:

LIC2 = (u̇T (θ, t0)− 0)2.

For this example, ωODE = ωIC1 = ωIC2 = 1/3. Then, the total loss function
is:

Numerical Solution of Ordinary and Delay Differential Equations 75

Ltotal =
1

3
(LODE + LIC1 + LIC2) .

For this example, the structure of the network we employed consisted of
4 hidden layers, each one of them containing 60 neurons. We chose the
hyperbolic tangent activation throughout the whole network; meanwhile, we
utilized the Adam optimizer with the default learning rate of 1 × 10−3. A
total of 20, 000 uniformly spaced points were deployed in the interval [0, 20].
We ran our program for 50, 000 epochs to obtain a good approximation.
Figure 4.5 shows the evolution of the approximation throughout the runtime
compared to the ”exact” solution provided by the Runge-Kutta method of
order 4 with a step-size of 0.001. We also show the values of the loss function
at every 500 epochs to increase clarity.
Although a total of 50,000 epochs were run, around the 30,000th epoch, we
already had a decent approximation.

Lotka-Volterra Equations

As seen in Section 2.6 of Chapter 1, the Lotka-Volterra equations are a pair of
first-order differential equations used to describe the changes in population of
a two-species biological environment, the predator and the prey. We now look
to approximate both of these equations using the PINN method. Recalling
both of these equations:

ẋ = αx− βxy,

ẏ = −γy + δxy,
(4.6)

where α, β, γ and δ are real-valued parameters, used to describe how the
predator and prey interact.
For this example, we look to solve this system with parameters α = 0.1, β =
0.002, γ = 0.2 and δ = 0.0025. Also, we name both species of the system;
we use rabbits as the prey and foxes as the predator. The initial conditions
of the system are the number of rabbits and foxes we begin with. In this
case, we initially have 80 rabbits and 20 foxes; thus, the system of differential
equations we look to solve is

ẋ = 0.1x− 0.002xy,

ẏ = −0.2y + 0.0025xy,
(4.7)

Solving ODEs and DDEs Using Neural Networks 76

Figure 4.5: Evolution of approximations and values of the loss function every
500 epochs of the Van der Pol equation 4.5.

Numerical Solution of Ordinary and Delay Differential Equations 77

with x(0) = 80 and y(0) = 20, where x and y are the number of rabbits and
foxes at any given time, respectively.
For this example, we approximate the system on the interval [0, 50], where we
deployed a total of 2000 uniformly spaced points. For the details of the neural
network, we employed a network consisting of 5 hidden layers with a total of
120 nodes per layer. The sigmoid activation function was used throughout the
whole network; meanwhile, the utilized optimizer was the Adam optimizer
with the default learning rate 1× 10−3. The results are shown in Figure 4.6,
where we compare the approximations with the ”exact” solution provided by
Euler’s method with a step-size of 0.05. The loss function’s values every 500
epochs are shown to increase clarity.
As shown in Fig. 4.6 the approximations stay as a straight line throughout
the first 10,000 epochs. It isn’t until epoch 20,000 that the approximations
start to resemble the “exact” solution. We ran the program for a total of
100,000 epochs, but we obtained the best approximation on the 99000th
epoch. The loss function behaves as desired, decreasing its values along the
program’s runtime.

4.3.2 Delay Differential Equations

Exponential Equation with Delay

The first DDE example we look at is the exponential differential equation,
but with the addition of a delay to the equation. This delay differential
equation is given by

dy

dt
= ky(t− τ),

where k is a parameter and τ indicates the delay of the differential equation.
In this case, we solve the differential equation with a value of k = −0.25 on
the interval [0, 70] with a delay of τ = 15. The initial condition function is
given by y(t) = 10 for t ≤ 0. Therefore, the delay differential equation we
are looking to solve is

dy

dt
= −0.25y(t− 15),

y(t) = 10 , t ∈ [−15, 0].
(4.8)

The loss function utilized for this example will be explained thoroughly. Let

Solving ODEs and DDEs Using Neural Networks 78

Figure 4.6: Approximation history and loss function values for the Lotka-
Volterra system 4.7.

Numerical Solution of Ordinary and Delay Differential Equations 79

uT
R0

(θ, t), uT
R1

(θ, t), and uT
R2

(θ, t) be trial solutions of the DDE in their respec-
tive regions. For R0:

LR0 =
1

S0

S0∑
i=1

(
uT
R0

(θ, ti)− ϕ(ti)
)2

.

For R1:

LR1 =
1

S1

S1∑
i=1

(
u̇T
R1

(θ, ti)− 0.25ϕ(ti − τ)
)2

.

For R2:

LR2 =
1

S2

S2∑
i=1

(
u̇T
R2

(θ, ti)− 0.25uT
R2

(θ, ti)
)2

.

For this example we have ωR0 = ωR1 = ωR2 = 1/3. The total loss function
for the DDE is:

Ltotal =
1

3
(LR0 + LR1 + LR2).

For the details of the network employed, we used a network consisting of
4 hidden layers with 50 nodes in each layer. We deployed a total of S0 =
S1 = 1100 and S2 = 4000 uniformly spaced points on the respective regions.
We chose the hyperbolic tangent activation function throughout the whole
network, and we used the Adam optimizer with the default learning rate of
1× 10−3. The evolution of the approximations across the 100,000 epochs we
ran our program, as well as the values of the loss function, is found in Figure
4.7.
As can be seen in Fig. 4.7, the approximation starts as a straight line at the
value t = 0 and slowly starts taking shape into the “exact” solution given by
Euler’s method with a step-size of 0.01. By the 90000th epoch, we already
had a good approximation of the solution.

Logistic Equation with Delay

We look at the logistic equation with delay, which models the dynamics of
populations. The delay logistic equation is given by

y′(t) = ay(t)(1− y(t− τ)), (4.9)

Solving ODEs and DDEs Using Neural Networks 80

Figure 4.7: Evolution of the approximations and loss values of the delay
exponential equation 4.8.

Numerical Solution of Ordinary and Delay Differential Equations 81

where a is a parameter and τ is the delay or lag of the equation.
In this case, we solve the equation with a value of a = 1.4 on the interval
t ∈ [0, 20] with a delay of τ = 1, and an initial condition set by the function
y(t) = 0.1 for t ∈ [−τ, 0] [5]

y′(t) = 1.4y(t)(1− y(t− 1)),

y(t) = 0.1 , −1 ≤ t ≤ 0.
(4.10)

We sampled a total of S0 = S1 = 250 and S2 = 5000 uniformly spaced points
on the three different regions. As for the details of the network employed, it
consisted of a network with 4 hidden layers, with each one of them containing
25 nodes. The chosen activation function this time was the sigmoid activation
function, while the optimizer utilized was the Adam optimizer with a learning
rate of 1×10−2. The evolution of the approximation compared to the ”exact”
solution given by Euler’s method for DDEs with a step-size of 0.004, and the
behavior of the loss function can be seen in Figure 4.8.
We ran the program for a total of 140,000 epochs to achieve a fairly decent
result. A similar trick, like in the case of the logistic equation without delay,
was employed. We added an extra term to the computation of the loss func-
tion for the first 40,000 epochs for the approximation to escape the unstable
solution y(t) = 0. If this additional term was not added, the approxima-
tion stays in the unstable solution y(t) = 0for the total of the program’s
execution, as evidenced by Fig. 4.9.
It is unknown whether or not the approximation will eventually converge to
the solution given a larger number of epochs, but in our case, it does not
seem like it will. As it is done in [5], we now make a = 0.3 in Eq. 4.9 and
keep everything else the same as in the previous case.

y′(t) = 0.3y(t)(1− y(t− 1)),

y(t) = 0.1 , −1 ≤ t ≤ 0.
(4.11)

We also keep the same network configuration as the previous case, but now
we only run the program for 20,000 epochs. The development of the ap-
proximations, as well as the loss function’s values, can be found in Figure
4.10.
As can be seen in Fig. 4.10 the approximation converges almost immediately
to the ”exact” solution given by Euler’s method with a step-size of 0.003.
Like in the previous case, we employed the same trick of using a temporary

Solving ODEs and DDEs Using Neural Networks 82

Figure 4.8: Evolution of the approximations and loss values of the logistic
delay differential equation 4.10.

Numerical Solution of Ordinary and Delay Differential Equations 83

Figure 4.9: Approximation of logistic equation with delay 4.9 without the
boost.

condition in the computation of the loss function to boost the approximation
out of the unstable solution y(t) = 0. If we did not include this short-
term condition in the loss function, the approximations stay in the unstable
solution y(t) = 0 for the duration of the program’s runtime, as evidenced by
Fig. 4.11.
As in the previous case, it is unknown whether or not the approximation will
eventually converge to the solution given a larger number of epochs. But it
is highly unlikely it will.

Lotka-Volterra Equations with Delay

We now incorporate a delay into the Lotka-Volterra equations. Firstly, a
brief explanation of the reasoning behind adding the delay. We add a delay
to the α parameter, which represents the maximum per capita growth rate
of the prey. The addition of this delay makes sense biologically speaking,
because animals take time to mature and become able to reproduce. This
delay represents the time between when an animal is born and the time they
become reproductively capable, which is when they start to contribute to the
population’s dynamics.

Solving ODEs and DDEs Using Neural Networks 84

Figure 4.10: Evolution of approximations and loss function values of logistic
delay differential equation 4.11.

Numerical Solution of Ordinary and Delay Differential Equations 85

Figure 4.11: Approximation of logistic equation 4.11 without the boost.

The Lotka-Volterra equations with delay on the reproduction term are

ẋ = αx(t− τ)− βx(t)y(t),

ẏ = −γy(t) + δx(t)y(t).
(4.12)

For this example, we keep the same species and parameters from the Lotka-
Volterra without delay example we presented before. These parameters are
α = 0.1, β = 0.002, γ = 0.2 and δ = 0.0025. Therefore, the system we want
to approximate is

ẋ = 0.1x(t− τ)− 0.002x(t)y(t),

ẏ = −0.2y(t) + 0.0025x(t)y(t),
(4.13)

where the initial condition function for x is ϕ(t) = 80 for x ≤ 0 and the
initial condition for y is y(0) = 20. In this case, x represents the number of
rabbits and y represents the number of foxes at any given time. We solve
this system on the [0, 52] interval, with a value of τ = 16.
For the implementation of this example, we used a two neural network design.
Each network represents one of the variables of our system. The input for
our networks is the same [−τ, T] interval, but split into three parts, just as
we discussed previously.
The loss functions used for this example are explicitly explained next. We
used two neural networks for this example; hence, we define two loss func-
tions, one for each network.

Solving ODEs and DDEs Using Neural Networks 86

Let uT
R0

(θ, t), uT
R1

(θ, t), and uT
R2

(θ, t) be trial solutions of the equation corre-
sponding to the x variable, in their respective regions. Also, let LR0 ,LR1 ,
and LR2 be the loss function values for this equation.
Similarly, let uTR0

(θ, t), uTR1
(θ, t), and uTR2

(θ, t) be trial solutions of the equation
corresponding to the y variable. Also, let LR0 ,LR1 , and LR2 be the loss
function values for this equation.
For the R0 region of the x equation and the initial condition of the y equation:

LR0 =
1

S0

S0∑
i=1

(uR0(θ, ti)− ϕ(ti))
2 ;

LIC = (uTR1
(θ, ti)− 20)2.

For R1 of both equations:

LR1 =
1

S1

S1∑
i=1

(
u̇T
R1

(θ, ti)− 0.1ϕ(ti − τ) + 0.002uT
R1

(θ, ti)u
T
R1

(θ, ti)
)2

;

LR1 =
1

S1

S1∑
i=1

(
u̇TR1

(θ, ti) + 0.2uTR1
(θ, ti)− 0.0025uT

R1
(θ, ti)u

T
R1

(θ, ti)
)2

.

Finally, for the R2 region:

LR2 =
1

S2

S2∑
i=1

(
u̇T
R2

(θ, ti)− 0.1uT
R2

(θ, ti − τ) + 0.002uT
R2

(θ, ti)u
T
R2

(θ, ti)
)2

;

LR2 =
1

S2

S2∑
i=1

(
u̇TR2

(θ, ti) + 0.2uTR2
(θ, ti)− 0.0025uT

R2
(θ, ti)u

T
R2

(θ, ti)
)2

.

The total loss function for the x variable equation is:

Ltotal =
1

3
(LR0 + LR1 + LR2).

And, the total loss function for the y variable equation is:

Numerical Solution of Ordinary and Delay Differential Equations 87

Ltotal =
1

3
(LIC + LR1 + LR2).

For the details of the networks employed, we used the same network structure
for both networks. We utilized two networks consisting of 5 hidden layers,
each one of them containing a total of 120 nodes. The activation function
used throughout both networks was the sigmoid activation function, while
the chosen optimizer was the Adam optimizer with the default learning rate
of 1 × 10−3 for both of them. We sampled a total of S0 = S1 = 2000 and
S2 = 4500 uniformly spaced points for each of the three regions. We ran our
program for a total of 40, 000 epochs. The evolution of the approximation
throughout the execution time compared with the ”exact” solution given by
Euler’s method for DDEs with a step-size of 0.008, as well as both of the
network’s loss function values, can be found in Figure 4.12.
As shown in Fig. 4.12, the approximations converged faster than the exam-
ple we presented earlier, where we did not incorporate delay, but used the
same parameters. This may be caused by the initial parameters of the neural
networks; in this case, we might have been closer to a minimum than in the
previous example. By the 35000th epoch, we already had a good approxima-
tion of the solution of the system. As for the behavior of the loss functions,
they both follow a very similar behavior throughout the execution time of
the program. In some cases, they even overlap with each other.

Solving ODEs and DDEs Using Neural Networks 88

Figure 4.12: Evolution of approximations and loss function values of Lotka-
Volterra system with delay 4.13.

Numerical Solution of Ordinary and Delay Differential Equations 89

Chapter 5

Conclusions and Discussion

In this thesis, we have reviewed the Physics-Informed Neural Network method
for solving ordinary differential equations and delay differential equations,
and how it is an effective and powerful method for approximating these types
of equations.
One of the advantages of using this method is the small amount of data that
is needed to train the neural network. The only data needed to train the
neural network using the PINN method is the differential equation itself and
its initial conditions. This is vastly different than other applications of neural
networks, like image recognition, where a large amount of data is needed to
properly train the neural network.
Experimentation is needed to utilize this method effectively. We employed
the L-BFGS optimization algorithm when we first approached this method.
Because this optimizer’s implementation is not straightforward compared
with the implementation of the Adam optimizer, we decided to stop using it
and kept using Adam through the entirety of this thesis.
Another thing we noted is that the hyperbolic tangent activation function
seemed to perform better than the sigmoid function for equations whose
solutions have oscillations, like the Van der Pol oscillator and the logistic
equation with delay. We do not know if this is intended, but further research
is needed to claim the validity of this conjecture.
The flexibility of this method is noteworthy; the PINN method can be used
to approximate various types of differential equations. In this thesis, we only
explored examples of DDEs and ODEs, but it can also be used to approximate
PDEs. With only small modifications to the base code for approximating
ODEs, it was also possible to use it with DDEs.

Conclusions and Discussion 90

One advantage the PINN method has over traditional methods like the
Runge-Kutta methods is the ability to work with higher-order differential
equations without the need to convert them into a system of first-order differ-
ential equations. Not having to convert the differential equation into a system
of differential equations is especially useful when working with higher-order
differential equations.
One of the main drawbacks of using this method is that there is no estab-
lished blueprint or recipe you can follow that guarantees the approximations’
convergence to the solution. When using this method, one has to employ a
trial-and-error approach. Carefully inspect the behavior of the approxima-
tions and loss function to learn how the method is performing. Adding to
this, the PINN method is not an all-purpose method, meaning there is a
lack of a one-size-fits-all network configuration that can be used for every
differential equation. As we explored in Chapter 4 of this thesis, each one
of the examples we showed used a different setup from the others. So this
means that even if you find an optimal network configuration and optimizer
choice for a differential equation, it does not imply that this setup will work
for a different differential equation.
Another drawback of PINN is the computational power needed to use this
method. Optimizing the neural networks requires a lot of computational
power, especially GPUs. When working with more complex problems, not
having access to optimal equipment may lead to problems like having large
runtimes. As this is an open topic, research is still being conducted, so
optimizations for this method can still be found. This, combined with tech-
nological advancements in the area of GPUs, might make this stop being an
issue in the future.

Numerical Solution of Ordinary and Delay Differential Equations 91

Appendix A

Proof of theorem 2.1

Before the theorem’s proof we look at some preliminary results.

Definition A.1 (Cauchy Sequence). A sequence {pn} in a normed linear
space X is said to be Cauchy in X if for each ϵ > 0, there is a natural
number N such that for all m,n ≥ N

||pn − pm|| < ϵ.

Definition A.2 (Complete Space). A normed linear space X is said to be
complete if every Cauchy sequence in X converges to an element in X.

Definition A.3 (Lipschitz Condition). Let U be an open subset of Rn. A
function f : U → Rn satisfies the Lipschitz condition if there exists a constant
K > 0 such that

|f(x)− f(y)| ≤ K|x− y| ∀x, y ∈ U.

Lemma A.1. Let U be an open subset of Rn and f : U → Rn. If f ∈ C1(U),
then f is locally Lipschitz on U .

Proof. Let x0 be an arbitrary point in U . Since U ⊂ Rn is open, there exists
an open ball of radius ϵ > 0, such that Bϵ(x0) ⊂ U ,

Bϵ(x0) = {x ∈ Rn : |x− x0| < ϵ} ⊂ U.

Since Bϵ(x0) is open, we can find a closed ball of radius ϵ/2 such that
Bϵ/2(x0) ⊂ Bϵ(x0). Thus Bϵ/2(x0) is compact.

Proof of theorem 2.1 92

Let K be the maximum of f ′(x) on Bϵ/2(x0),

K = max
|x−x0|≤ϵ/2

||f ′(x)||.

Set u = y − x, for x, y ∈ Bϵ/2(x0). Then, x + su ∈ Bϵ/2(x0) for 0 ≤ s ≤ 1,
since Bϵ/2(x0) is a convex set.
Let F : [0, 1]→ Rn such that

F (s) = f(x + su).

Applying the chain rule to F (s) we have

F ′(s) = f ′(x + su) · u.

Then by the fundamental theorem of calculus,

f(y)− f(x) = F (1)− F (0) =

∫ 1

0

F ′(s) ds =

∫ 1

0

f ′(x + su) · u ds.

Applying integral properties and inequalities,

|f(y)− f(x)| =
∣∣∣∣∫ 1

0

f ′(x + su) · u ds

∣∣∣∣
≤
∫ 1

0

|f ′(x + su) · u| ds

≤
∫ 1

0

∥f ′(x + su)∥ |u| ds

≤ K|u| = K|y − x|

Therefore, f is locally Lipschitz on U .

The proof of the next three theorems can be found in Rudin [27].

Theorem A.1
Let {fn} be a sequence of functions defined on a set E. Then, {fn} converges
uniformly on E if and only if for every ϵ > 0 there exists an integer N such
that m,n ≥ N, x ∈ E, implies that

|fn(x)− fm(x)| ≤ ϵ.

Numerical Solution of Ordinary and Delay Differential Equations 93

Theorem A.2
Suppose that fn → f uniformly on a set E in a metric space. Let x be a limit
point of E, and suppose that

lim
t→x

fn(t) = An.

Then {An} converges, and

lim
t→x

f(t) = lim
n→∞

An.

Theorem A.3
If {fn} is a sequence of functions on a set E, and if fn → f uniformly on
E, then f is continuous on E.

Now we prove the theorem.

Theorem A.4
Let E be an open subset of Rn that contains x0 and assume f ∈ C1(E). Then
there exists an a > 0 such that the initial value problem

ẋ = f(x)

x(0) = x0

has a unique solution x(t) on the interval [−a, a].

Proof. Since f ∈ C1(E), by lemma A.1 there exists a neighborhood around
x0, Bϵ(x0), such that Bϵ(x0) ⊂ E, and a constant K > 0 such that

|f(x)− f(y)| ≤ K|x− y| ∀x, y ∈ Bϵ(x0).

Let b = ϵ/2 and B0 = {x ∈ Rn | |x − x0| ≤ b}. Since f is continuous and
B0 is a compact set, then f is bounded on B0. Furthermore, f reaches its
maximum value on B0, let

M = max
x∈B0

|f(x)|.

Let uk(t) be a sequence of functions defined by Picard’s method of successive
approximations (uk+1(t) = x0 +

∫ t

0
f(uk(s)) ds). Assuming that there exists

an a > 0 such that uk(t) is defined and continuous on [−a, a] and satisfies

max
t∈[−a,a]

|uk(t)− x0| ≤ b. (A.1)

Proof of theorem 2.1 94

By the last statement and because f is continuous it follows that f(uk(t))
is defined and continuous on [−a, a]. Then the next approximation uk+1(t),
given by

uk+1(t) = x0 +

∫ t

0

f(uk(s)) ds

is defined and continuous on [−a, a].
Now lets see that |uk+1 − x0| is bounded. By the definition of uk+1 we have

|uk+1 − x0| =
∣∣∣∣∫ t

0

f(uk(s)) ds

∣∣∣∣
≤
∫ t

0

|f(uk(s))| ds

≤
∫ t

0

M ds

= Mt

≤Ma.

Therefore, |uk+1 − x0| is bounded.
Choosing a such that 0 ≤ a ≤ b/M , it follows by induction that uk(t)
is defined, is continuous and satisfies equation A.1 for all t ∈ [−a, a] and
k = 1, 2, 3,
Now, since interval [−a, a] is in B0 ⊂ Bϵ(x0), then f is Lipschitz for all
t ∈ [−a, a]. In particular, taking u1(t) and u2(t), and doing u2(t)− u1(t) we
have

|u2(t)− u1(t)| =
∣∣∣∣∫ t

0

f(u1(s))− f(u0(s))

∣∣∣∣ ds
≤
∫ t

0

|f(u1(s))− f(u0(s))| ds

≤
∫ t

0

K|u1(s)− u0(s)| ds

= K

∫ t

0

|u1(s)− u0(s)| ds.

Notice that u0(s) = x0, then

|u2(t)− u1(t)| ≤ K

∫ t

0

|u1(s)− x0| ds.

Numerical Solution of Ordinary and Delay Differential Equations 95

By equation A.1 it follows that

|u2(t)− u1(t)| ≤ K

∫ t

0

b ds

= Kb

∫ t

0

ds

= Kbt

≤ Kba.

We have shown that |u2(t)−u1(t)| is bounded. Now we show that the general
case is bounded as well.
Assume that for some integer j ≥ 2

max
t∈[−a,a]

|uj(t)− uj−1(t)| ≤ (Ka)j−1b. (A.2)

Taking uj+1(t) and uj(t), we will show that |uj+1(t)− uj(t)| is bounded.

|uj+1(t)− uj(t)| =
∣∣∣∣∫ t

0

f(uj(s))− f(uj−1(s))

∣∣∣∣ ds
≤
∫ t

0

|f(uj(s))− f(uj−1(s))| ds

≤
∫ t

0

K|uj(s)− uj−1(s)| ds

= K

∫ t

0

|uj(s)− uj−1(s)| ds.

By equation A.2 it follows that

|uj+1(t)− uj(t)| ≤ K

∫ t

0

|uj(s)− uj−1(s)| ds

≤ K

∫ t

0

max
t∈[−a,a]

|uj(t)− uj−1(t)| ds

≤ K

∫ t

0

(Ka)j−1b ds

= K(Ka)j−1b

∫ t

0

ds

= K(Ka)j−1bt

≤ K(Ka)j−1ba = Ka(Ka)j−1b = (Ka)jb.

Proof of theorem 2.1 96

Thus, it follows by induction that equation A.2 holds for j = 2, 3, There-
fore, |uj+1(t)− uj(t)| is bounded.
Setting α = Ka, then |uj+1(t)− uj(t)| ≤ αjb. Choosing a such that 0 < a <
1/K. We prove that uk(t) is a Cauchy sequence.
Let ϵ > 0,m > k ≥ N and t ∈ [−a, a]. We can write um(t)− uk(t) as a sum

um(t)− uk(t) =
m−1∑
j=k

uj+1(t)− uj(t).

Then, taking the absolute value and using the triangle inequality yields

|um(t)− uk(t)| =

∣∣∣∣∣
m−1∑
j=k

uj+1(t)− uj(t)

∣∣∣∣∣
≤

m−1∑
j=k

|uj+1(t)− uj(t)|

≤
∞∑

j=N

|uj+1(t)− uj(t)|

≤
∞∑

j=N

αjb = b
∞∑

j=N

αj.

Notice this last series is a geometric convergent series because α = Ka < 1.
Therefore

|um(t)− uk(t)| = b
αN

1− α
.

Because α < 1, the right side of this last equality approaches zero as N →∞.
Therefore, for all ϵ > 0 there exists N such that m, k ≥ N implies

||um − uk|| = max
t∈[−a,a]

|um(t) − uk(t)| < ϵ.

This proves that the sequence {uk} is a Cauchy sequence of continuous func-
tions in C([−a, a]). By Theorems A.1 and A.3, uk(t) converges uniformly to
a continuous function u(t) for all t ∈ [−a, a].
Thus,

u(t) = lim
k→∞

uk(t).

Numerical Solution of Ordinary and Delay Differential Equations 97

Making k →∞ of both sides in the definition of the uk+1’th term of successive
approximations

lim
k→∞

uk+1(t) = lim
k→∞

(
x0 +

∫ t

0

f(uk(s)) ds

)
.

This is:

u(t) = x0 + lim
k→∞

(∫ t

0

f(uk(s)) ds

)
.

By Theorem A.2 we have

u(t) = x0 +

∫ t

0

lim
k→∞

f(uk(s)) ds.

u(t) = x0 +

∫ t

0

f(u(s)) ds. (A.3)

Since u(t) is continuous then f(u(t)) is continuous, and by the fundamental
theorem of calculus equation A.3 is differentiable and

u′(t) = f(u(t)) ∀t ∈ [−a, a].

Furthermore, u(0) = x0. From equation A.1 it follows that

max
t∈[−a,a]

|uk(t)− x0| ≤ b.

This is u(t) ∈ Bϵ(x0) ⊂ E for all t ∈ [−a, a]. Thus, u(t) is a solution of
the initial value problem on [−a, a]. It remains to show that the solution is
unique.
Let v(t) and u(t) be two solutions of the initial value problem on [−a, a].
The function |ut− vt| is continuous in the compact set [−a, a]. Furthermore,
it reaches its maximum at some point t1 ∈ [−a, a]

max
t∈[−a,a]

|u(t)− v(t)| = |u(t1)− v(t1)|.

Proof of theorem 2.1 98

Then

||u− v|| = max
t∈[−a,a]

|u(t)− v(t)|

=

∣∣∣∣∫ t1

0

f(u(s))− f(v(s)) ds

∣∣∣∣
≤
∫ |t1|

0

|f(u(s))− f(v(s))| ds

≤ K

∫ |t1|

0

|u(s)− v(s)| ds

≤ Ka max
t∈[−a,a]

|u(t)− v(t)|

≤ Ka||u− v||

Suppose ||u− v|| > 0, then we can divide this last inequality by ||u− v||

||u− v|| ≤ Ka||u− v||
1 < Ka⇒⇐

This is a contradiction because Ka < 1. Thus

||u− v|| = 0.

Which implies
|u(t)− v(t)| = 0 ∀t ∈ [−a, a].

Then, u(t) = v(t) for all t ∈ [−a, a]. Therefore, the successive approximations
converge uniformly to a unique solution of the initial value problem on the
interval [−a, a], where a is any number satisfying 0 < a < min

(
b
M
, 1
K

)
.

Numerical Solution of Ordinary and Delay Differential Equations 99

Bibliography

[1] C. C. Aggarwal. Neural Networks and Deep Learning: A Textbook, chap-
ter 4. Springer Nature, Cham, Switzerland, 2 edition, June 2023. ISBN
9783031296420.

[2] B. Basics. The life and death of a neuron— national institute of neuro-
logical disorders and stroke, 2019.

[3] P. Baxandall and H. Liebeck. Vector Calculus, chapter 3. Dover
Books on Mathematics. Dover Publications, Mineola, NY, 2008. ISBN
0486466205.

[4] A. Baydin, B. Pearlmutter, A. Radul, and J. Siskind. Automatic differ-
entiation in machine learning: A survey. Journal of Machine Learning
Research, 18:1–43, 04 2018.

[5] A. Bellen and M. Zennaro. Numerical Methods for Delay Differential
Equations, chapter 1. Numerical Mathematics and Scientific Computa-
tion. Clarendon Press, Oxford, England, Apr. 2003. ISBN 0198506546.

[6] M. Braun. Differential Equations and Their Applications, chapter 3.
Texts in Applied Mathematics. Springer, New York, NY, 4 edition, Dec.
1992. ISBN 9780387943305.

[7] R. L. Burden and J. D. Faires. Numerical Analysis, chapter 5.
Brooks/Cole, Cengage Learning, ninth edition, 2011. ISBN 0538733519.

[8] S. L. Campbell and R. Haberman. Introduction to Differential Equa-
tions with Dynamical Systems, chapter 1. Princeton University Press,
Princeton, NJ, 2008. ISBN 9780691124742.

BIBLIOGRAPHY 100

[9] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E.
Dahl. On empirical comparisons of optimizers for deep learning. CoRR,
abs/1910.05446, 2019. URL http://arxiv.org/abs/1910.05446.

[10] R. Courant and F. John. Introduction to Calculus and Analysis: Vol-
ume II, chapter 2. Springer New York, NY, New York, NY, oct
2011. ISBN 9781461389583. URL http://dx.doi.org/10.1007/

978-1-4613-8958-3.

[11] C. F. Curtiss and J. O. Hirschfelder. Integration of stiff equations.
Proceedings of the National Academy of Sciences, 38(3):235–243, Mar.
1952. ISSN 1091-6490. URL http://dx.doi.org/10.1073/pnas.38.

3.235.

[12] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2(4):303–314, Dec. 1989.
ISSN 1435-568X. URL http://dx.doi.org/10.1007/BF02551274.

[13] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri. Activation func-
tions in deep learning: A comprehensive survey and benchmark. Neu-
rocomputing, 503:92–108, Sept. 2022. ISSN 0925-2312. URL https:

//doi.org/10.1016/j.neucom.2022.06.111.

[14] I. R. Epstein and J. A. Pojman. An Introduction to Nonlinear Chemical
Dynamics: Oscillations, Waves, Patterns, and Chaos, chapter 1. Oxford
University Press, 11 1998. ISBN 9780195096705. URL https://doi.

org/10.1093/oso/9780195096705.001.0001.

[15] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning, chapter 6.
MIT Press, 2016. http://www.deeplearningbook.org.

[16] K. Gurney. An Introduction to Neural Networks, chapter 1. CRC Press,
Oct. 2018. ISBN 9781482286991. URL http://dx.doi.org/10.1201/

9781315273570.

[17] M. Islam, G. Chen, and S. Jin. An overview of neural network. American
Journal of Neural Networks and Applications, 5(1):7, 2019. ISSN 2469-
7400. URL http://dx.doi.org/10.11648/j.ajnna.20190501.12.

[18] E. M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of
Excitability and Bursting, chapter 2. The MIT Press, July 2006. ISBN

http://www.deeplearningbook.org

Numerical Solution of Ordinary and Delay Differential Equations 101

9780262276078. URL http://dx.doi.org/10.7551/mitpress/2526.

001.0001.

[19] D. Kingma and J. Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations, 12 2014.

[20] H. Kinsley and D. Kukie la. Neural Networks from Scratch (NNFS),
chapter 4. Harrison Kinsley, 2020. URL https://nnfs.io/.

[21] I. Lagaris, A. Likas, and D. Fotiadis. Artificial neural networks for
solving ordinary and partial differential equations. IEEE Transactions
on Neural Networks, 9(5):987–1000, 1998. ISSN 1045-9227. URL http:

//dx.doi.org/10.1109/72.712178.

[22] M. A. Nielsen. Neural Networks and Deep Learning, chapter 1. Deter-
mination Press, 2015.

[23] L. Perko. Differential equations and dynamical systems, chapter 2. Texts
in Applied Mathematics. Springer, New York, NY, 3 edition, Feb. 2008.
ISBN 0387951164.

[24] S. J. Prince. Understanding Deep Learning, chapter 6. The MIT Press,
2023. URL http://udlbook.com.

[25] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed
neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational physics, 378:686–707, Feb. 2019.
ISSN 0021-9991. URL https://www.sciencedirect.com/science/

article/pii/S0021999118307125.

[26] A. Ralston and P. Rabinowitz. A First Course in Numerical Analysis,
chapter 5. Dover Books on Mathematics. Dover Publications, second
edition, 2001. ISBN 9780486414546. LCCN 00064343.

[27] W. Rudin. Principles of Mathematical Analysis, chapter 7. International
series in pure and applied mathematics. McGraw-Hill Professional, New
York, NY, 3 edition, Feb. 1976. ISBN 007054235X; 9780070542358.

[28] J. Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, Jan. 2015. ISSN 0893-6080. URL http://dx.doi.

org/10.1016/j.neunet.2014.09.003.

BIBLIOGRAPHY 102

[29] S. Sharma, S. Sharma, and A. Athaiya. Activation functions in neural
networks. International Journal of Engineering Applied Sciences and
Technology, 04(12):310–316, May 2020. ISSN 2455-2143. URL http:

//dx.doi.org/10.33564/IJEAST.2020.v04i12.054.

[30] M. Spivak. Calculus on Manifolds: A Modern Approach to Classical
Theorems of Advanced Calculus, chapter 2. Addison-Wesley Publishing
Company, Jan. 1995. ISBN 0805390219.

[31] A. Subasi. Practical machine learning for data analysis us-
ing python, chapter 3. Academic Press, San Diego, CA, June
2020. ISBN 9780128213797. URL http://dx.doi.org/10.1016/

C2019-0-03019-1.

[32] M. Tenenbaum and H. Pollard. Ordinary Differential Equations: An
Elementary Textbook for Students of Mathematics, Engineering, and the
Sciences, chapter 1,2. Dover Books on Mathematics. Dover Publications,
Mineola, NY, Oct. 1985. ISBN 0486649407.

[33] X. Wen and M. Zhou. Evolution and role of optimizers in training
deep learning models. IEEE/CAA Journal of Automatica Sinica, 11
(10):2039–2042, 2024. ISSN 2329-9274. URL http://dx.doi.org/10.

1109/JAS.2024.124806.

[34] D. G. Zill. A First Course in Differential Equations with Modeling Ap-
plications, chapter 2,8. Brooks/Cole, Cengage Learning, tenth edition,
2013. ISBN 1111827052.

	Introduction
	An Overview of Ordinary Differential Equations
	Basic Concepts
	Classification of Ordinary Differential Equations
	Solving Ordinary Differential Equations
	The Solution of an ODE
	Particular & General Solutions of ODEs
	Initial Value Problems
	Some Analytical Methods to solve ODEs

	Systems of Differential Equations
	Delay Differential Equations
	Classical Numerical Methods for Ordinary Differential Equations
	Applications of Ordinary Differential Equations

	Introduction to Neural Networks
	Overview
	Structure of a Neural Network
	Neural Networks and the Brain
	Layers of a Neural Network

	Types of Neural Networks
	Shallow Neural Networks
	Deep Neural Networks

	Activation Functions
	Training of Neural Networks
	Optimizing a Neural Network
	Automatic Differentiation

	Physics-Informed Neural Networks

	Solving ODEs and DDEs Using Neural Networks
	How does it work
	Implementation
	Ordinary Differential Equations
	Delay Differential Equations

	Examples
	Ordinary Differential Equations
	Delay Differential Equations

	Conclusions and Discussion
	Proof of theorem 2.1

